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Carbon Functions and reactions catalyzed by enzymes/proteins
source and
gene
| Glucose || |
| pisG || Functions |

The product of ptsG gene (glucose-specitic PTS permease) is responsible for
uptake of exogenous glucose from the medium, releasing the phosphate ester
into the cell cytoplasm in preparation for metabolism, primarily via glycolysis.
PtsG/Crr, the glucose-specific PTS permease, belongs to the functional
superfamily of the phosphoenolpyruvate (PEP)-dependent sugar-transporting
phosphotransterase system (PTS). The PTS transports and simultaneousty
phosphorylates its sugar substrates in a process called group translocation.

| || Reaction |

phosphoenolpyruvate + B-D-glucose|perplasmic space) — P-D-glucose 6-phosphate +

pyravate
| Maltose || |
| malEFGK || Functions |
malKFGE operon plays the major role in the maltose transport system and it
belongs to the ATP-binding cassette (ABC) superfamily of transporters. malFE is
the periplasmic maltose-binding protein, malF and malG are the integral
membrane components of the ABC transporter, and malK is the ATP-binding
component of the ABC transporter (MalFGKs)
| ” Reactions |
| || “]a“-()selexrmcellulm' space] « n)ahose’lcymsoll |
| || ATP + maltosejperiptasmic spacet + H20 < ADP + phosphate + maltose;eyioson |
| mal() ” Functions |

malQ codes for amylomaltase, which is responsible for degrading maltose after
transport into the cell (6). The glucose liberated in the degradation reaction is
then used in glycolysis. Amylomaltase also recognizes maltotriose and larger

maltodextrins (donors), cleaving off the reducing glucose residue and
transferring the remaining dextrinyl residue onto the nonreducing end of

maltodextrin (acceptors), incloding maltose and glucose. Amylomaltase thus

produces glucose and longer maltodexirins from maltotriose, the smallest donor

substrate, as well as from longer linear maltodextrins.

|| Reaction

H»>O + maltose &2 B-D-glucose

maltotriose + maltose <> maltotetraose + f-D-glucose

Fig. 20-1
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‘ glk H Functions

Under normal conditions, glucokinase plays a minor role in E. coli glucose
metabolism. Under anabolic stress the enzyme is required to supplement the
levels of glucose 6-phosphate.

Reaction

‘ Galactose H

| | |
‘ H B-D-glucose + ATP «» B-D-glucose 6-phosphate + ADP ‘
|
|

| mgIABC H Functions

MgIABC is a B-methyl galactoside transport system that is a member of the
ABC superfamily of transporters. The mglB gene codes for a galactose-binding
protein that serves both as the galactose chemoreceptor as well as the
recognition component of the B-methyl galactoside transport system, which
utilizes the galactose-binding protein; mglC encodes the integral membrane
component; and mglA encodes the ATP-binding component of the ABC
transporter.

| ‘ | Reaction |

ATP + B-D-galactosepenplasmic spacej + H20 <> ADP + phosphate + -D-
galactose;eyiosol]

‘ galk H Functions ‘

galE codes for UDP-galactose 4-epimerase, which catalyzes a hydride transfer
and the interconversion of UDP-galactose and UDP-glucose as part of galactose
catabolism.

‘ | Reaction

H UDP-D-glucose «» UDP-galactose

galK H Functions

‘ ‘ Reaction

H D-galactose + ATP — a-D-galactose 1-phosphate + ADP

| |
| |
| |
| H Galactokinase, coded by ga/K, catalyzes the first step in galactose metabolism. |
| |
| |
| |

galT H Functions

galT codes for galactose-1-phosphate uridylyltransferase, which catalyzes an
interconversion reaction in galactose catabolism.

‘ ‘ ‘ Reactions ‘

UDP-D-glucose + a-D-galactose 1-phosphate <> a-D-glucose 1-phosphate +
UDP-galactose

Fig. 20-2
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H o-D-galactose 1-phosphate + UTP « UDP-galactose + diphosphate ‘

| galP || Functions |

GalP is one of two, along with MglABC, major routes for galactose transport

into E. coli. 2-Deoxy-D-galactose is a specific substrate for GalP but not for

MglABC, and GalP operates by a sugar-proton symport mechanism whereas

MglABC does not.

| || Reaction |
‘ H H+[pcriplasmic space} + ﬁ'D‘galaCtOSC[pcriplasmic space] ~> H+[cytosoll + ﬁ'D'galaCtOSC[cymsoﬂ ‘
| pgm || Functions |
ipgm codes for phosphoglucose mutase, which catalyzes conversion of glucose 1-

phosphate to glucose 6-phosphate. Maximum activity is obtained only in the
presence of a-D-glacose 1,6-bisphosphate. This bisphosphate is an intermediate
in the reaction, being formed by transfer of a phosphate residue from the enzyme

to the substrate, but the dissociation of bisphosphate from the enzyme complex
is much slower than the overall isomerization.
‘ H Reaction ‘
| || a-D-glucose 1-phosphate — a-D-glucose 6-phosphate |
| Glycerol || |
‘ glpK H Function ‘
glpK codes [or glycerol kinase, which catalyzes the MgATP-dependent
phosphorylation of glycerol to vield sn-glycerol 3-phosphate. This is also the
rate-limiting step in glycerol utilization in E. coli.
‘ H Reaction ‘
‘ H glycerol + ATP — sn-glycerol 3-phosphate + ADP ‘
‘ glpF H Function ‘
The glycerol facilitator, GlpF, allows the facilitated diffusion of glycerol into the
cell.

| ” Reaction |
‘ H glycer()l[pcrjplusmic space] &~ g]yce’r()]!cymsol] ‘
‘ gpsA H Functions ‘

gpsA codes for glycerol-3-phosphate dehydrogenase {[NAD(P)"], which
catalyzes the NAD(P)H-~dependent reduction of the glycolytic intermediate
dihydroxyacetone phosphate to produce glycerol 3-phosphate

H Reaction

Fig. 20-3
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sn-glycerol 3-phosphate + NAD(P)" «» dihydroxyacetone phosphate +
NAD(PH + H*

Lactate ||

P |

Function ‘

LI1dP (or LctP) is a lactate/proton symporter responsible for the uptake of L-
lactate. The IldP/lctP gene is located in a lactate-inducible operon with the lctD
and IctR genes encoding a lactate dehydrogenase and a regulatory protein,
respectively.

Reaction ‘

+ T
H [periplasiic space} + laCtate[pcripJasmic space} —H feytosol] + ]aCtate[_cytoso]] ‘

dld |

Function ‘

dld codes for D-lactate dehydrogenase. There are three lactate dehydrogenase
enzymes in E. coli that interconvert pyruvate and lactate. One is an NAD-linked
fermentative dehydrogenase. The other two are membrane-bound flavoproteins,
each specific for the D- or L-isomer, and are involved in the aerobic respiratory
chain of E. coli. The D-lactate dehydrogenase is coded for by the dId gene, and it
is the primary source of energy to drive the active transport of certain sugars and
amino acids into the cell.

Reaction

ubiquinone-8 + D-lactate <> ubiquinol-8 + pyruvate

Function

The ackA gene product has propionate kinase activity as well as acetate kinase
activity. It is unclear whether the two ack genes, ackA and ackB, code for two
distinct acetate kinase enzymes or control a single enzyme. Helps in conversion
of acetate to acetyl phosphate. The ackA-encoded propionate kinase 2 has an
important role in propionyl-CoA metabolism. Acetate kinase can also catalyze
acetylation of CheY, increasing signal strength for flagellar rotation.

Reactions

Fig. 20-4
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ATP + propionate <> ADP + propionyl-P

acetate + ATP < acetylphosphate + ADP

‘ pta H Function ‘

pta gene codes for phosphate acetyltransferase, which can utilize both acetyl-
CoA and propionyl-CoA.

‘ H Reactions ‘

phosphate + acetyl-CoA ¢« acetylphosphate + CoA

propionyl-CoA + phosphate <> propionyl-P + CoA

acs H Function

acs gene codes for acetyl-CoA synthetase (ACS). There are two distinct
pathways by which £. coli converts acetate to acetyl-CoA. ACS catalyzes one of
them. It is thought that this ACS pathway functions in a mainly anabolic role,
scavenging acetate present in the extracellular medium. ACS also can catalyze
acetylation of CheY, increasing signal strength for flagellar rotation.

H Reactions

CoA + 4-coumarate + ATP — coumaroyl-CoA + diphosphate + AMP
CoA + propionate + ATP < propionyl-CoA + diphosphate + AMP
CoA + acetate + ATP <> acetyl-CoA + diphosphate + AMP

Fig. 20-5
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FLUX BALANCE ANALYSIS WITH
MOLECULAR CROWDING

STATEMENT REGARDING FEDERAL
FUNDING

This invention was made with government support under
Grant No. GM062449, awarded by the National Institutes of
Health. The government has certain rights in this invention.

Understanding an organism’s metabolism at a system
level requires knowledge of the physicochemical constraints
limiting its metabolic capabilities under different growth
conditions, and the genetic regulatory mechanisms that
ultimately allow it to adapt to a changing environment. In
some cases there is an obvious connection between an
environmental change and the regulatory mechanisms
responding to it, an example being a switch from aerobic to
anaerobic growth. However, there are constraints leading to
less obvious metabolic changes, involving a complex global
rearrangement of the cell’s metabolism. A key aim of
systems biology is to uncover the metabolic constraints
determining such complex phenotypic changes, which can
be understood only when the system is analyzed at a global
scale. In the absence of cell-scale kinetic models, flux
balance analysis (FBA) provides experimentally testable
predictions on an organism’s metabolic flux state, which are
based on conservation principles, particularly mass conser-
vation, and metabolic capacity constraints. The impact of
local constraints, such as uptake capacities, has been inves-
tigated, and capacity constraints over full metabolic path-
ways have been considered as well.

SUMMARY

The technologies described herein are useful in, without
limitation: 1) calculating cell growth rates in various envi-
ronments and genetic backgrounds; 2) calculating the order
of substrate utilization from a defined growth medium; 3)
calculating metabolic flux reorganization in various envi-
ronments and at various growth rates; and 4) calculating the
maximum metabolic rate and optimal metabolite concentra-
tions and enzyme activities by applying a computational
optimization method to a kinetic model of a metabolic
pathway. The methods described herein, including com-
puter-implemented methods and/or apparatus, such as com-
puter-devices embodying/for implementing the methods
supercede existing methods and capabilities in several ways.
In particular, current flux balance-based modeling
approaches have limited ability to predict substrate uptake
from the environment. Also, the predictions they generate
are based on previous knowledge of the maximum uptake
rates in the corresponding medium (the actual variables one
aims to predict), and, in contrast to extensive experimental
evidence, FBA in itself predicts the simultaneous utilization
of all carbon sources from a mixed-substrate growth
medium. Using the modeling framework described herein,
one can provide superior capabilities to predict cellular
metabolism over the existing modeling frameworks.

In one embodiment, provided herein is a method of
optimizing one or more biological activities in cells in a cell
culture, comprising: calculating one or more optimal cell
culture parameters for one or more biological activities in a
cell in a cell culture by applying an optimization method to
a list of one or more reactions representing or affecting the
one or more biological activities, wherein the optimization
method uses an intracellular molecular crowding parameter
(e.g., employs one or more values, algorithms, formulas,
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etc., that represent the extent of intracellular crowding or
solvent capacity of the cell in calculating an optimal value)
for one or more elements of the one or more reactions to
calculate a cell culture parameter for the one or more
biological activities in the cells. The method further com-
prises initiating and/or maintaining the one or more optimal
cell culture parameter in a culture of the cells. In one
embodiment, the cell culture parameter is a concentration of
a metabolite in the cell culture, such as a carbon or nitrogen
source, including, without limitation, one or more of: glu-
cose, galactose, maltose, lactate, glycerol, an amino acid and
a nucleotide. Additional non-limiting examples of a cell
culture parameter include: O,, CO,, or N, levels, pH, buffer
capacity, viscosity, degree of agitation (e.g., stirring), cell
density, etc. In one non-limiting embodiment the method
comprises calculating an order of substrate usage from a
growth medium and controlling an order of substrate usage
in the culture to achieve the one or more optimal biological
activities.

The method may further comprise calculating one or more
of a maximum metabolic rate, an optimal metabolite con-
centration and an enzyme activity by applying a computa-
tional optimization method to a kinetic model of a metabolic
pathway.

In another embodiment, a method is provided for achiev-
ing an optimal function of a biochemical reaction network in
a cell. The method comprises: (a) calculating optimal prop-
erties of a biochemical reaction network by applying a
computational optimization method to a list of reactions
representing said biochemical reaction network, wherein the
optimization method uses an intracellular molecular crowd-
ing parameter for one or more elements of the one or more
reactions of the list of reactions to calculate the optimal
properties; (b) altering the list of reactions in the biochemi-
cal reaction network and re-computing the optimal proper-
ties; and (c) repeating (b) until a desired optimal function is
reached. The method may further comprise calculating one
or more of a maximum metabolic rate, an optimal metabolite
concentration and an enzyme activity by applying a com-
putational optimization method to a kinetic model of a
metabolic pathway. The method also may further comprise
culturing a cell under culture conditions that favor achieve-
ment of the optimal function (e.g., the cells are cultured in
a manner, based on the calculations, that is calculated to
result in achievement of the optimal function, such as
growth rate or metabolite (e.g., starting material, interme-
diate or product of a cellular metabolic process), by-product,
secreted product or (e.g., recombinant) protein production).
The method may further comprise (d) constructing the
genetic makeup of a cell to contain the biochemical reac-
tions which result from (c¢); (e) placing the cell constructed
under (d) in culture under a specified environment to obtain
a population of cells; and (f) cultivating the cells as in step
(e) for a sufficient period of time and under conditions to
allow the cells to evolve to the desired optimal function
determined under (c), wherein the biochemical reaction
network comprises a comprehensive biochemical reaction
network.

According to a further embodiment, provided herein is a
computer-implemented method for achieving an optimal
function of a biochemical reaction network in cells in a cell
culture, including prokaryotic or eukaryotic cells, for
example and without limitation, bacterial, fungal (including
yeast), mammalian and cancer cells. The method comprises
(a) calculating in a computer one or more optimal cell
culture parameters in a cell culture using a flux balance
analysis constrained by a solvent capacity of cells in the cell
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culture, wherein the optimal cell culture parameter is cal-
culated by determining an optimal property of a biochemical
reaction network comprising a list of biochemical reactions
by applying a computational optimization method to one or
more of the biochemical reactions of the biochemical reac-
tion network, the optimization method comprising (i) alter-
ing one or more elements of the one or more biochemical
reactions in the biochemical reaction network and re-com-
puting the optimal property, and (ii) repeating (i) until an
optimal function is reached; and (b) initiating or maintaining
the optimal cell culture parameter in the cell culture to
achieve the optimal function of the biochemical reaction
network in the cells. According to one embodiment, the
optimization method further comprises calculating one or
more of a maximum metabolic rate, an optimal metabolite
concentration and an enzyme activity by applying a com-
putational optimization method to a kinetic model of a
metabolic pathway. In an example of an implementation of
the method, the method further comprises culturing a cell
under culture conditions that favor achievement of the
optimal function. Optionally, the method further comprises:
(c) constructing the genetic makeup of a cell to contain the
biochemical reactions (d) placing the cell constructed under
(¢) in culture under a specified environment to obtain a
population of cells; and (e) cultivating the cells as in step (d)
for a sufficient period of time and under conditions to allow
the cells to evolve to the desired optimal function deter-
mined under (a), wherein the biochemical reaction network
comprises a comprehensive biochemical reaction network.
In one embodiment, the optimal function is maximizing
biomass production. In another, the optimal property is
maximal internal yield of ATP. In a further embodiment, the
solvent capacity accounts for ribosome density in the cells in
the cell culture as a measure of ribosomal-, enzyme associ-
ated-, and non-metabolic proteins in the cells or accounts for
mitochondria as a subcellular compartment in the cells in the
cell culture. According to one embodiment, the method
comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system.

According to another embodiment, also provided is a
computer readable medium having stored thereon instruc-
tions which, when executed by a processor, cause the
processor to implement a process implementing a computer
model for achieving an optimal function of a biochemical
reaction network in cells in a cell culture. The process
comprises: (a) calculating one or more optimal cell culture
parameters in a cell culture using a flux balance analysis
constrained by a solvent capacity of cells in the cell culture,
wherein the optimal cell culture parameter is calculated by
determining an optimal property of a biochemical reaction
network comprising a list of biochemical reactions by apply-
ing a computational optimization method to one or more of
the biochemical reactions of the biochemical reaction net-
work, the optimization method comprising (i) altering one or
more elements of the one or more biochemical reactions in
the biochemical reaction network and re-computing the
optimal property, and (ii) repeating (i) until an optimal
function is reached; and (b) initiating or maintaining the
optimal cell culture parameter in the cell culture to achieve
the optimal function of the biochemical reaction network in
the cells. The computer-readable medium may include in its
various embodiments instructions which, when executed by
a processor, cause the processor to implement a process
implementing a computer model for achieving any method
described in this document, including, without limitation,
the following: a computer readable medium as described
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above in which the optimization method further comprises
calculating one or more of a maximum metabolic rate, an
optimal metabolite concentration and an enzyme activity by
applying a computational optimization method to a kinetic
model of a metabolic pathway; a computer readable medium
as described above wherein the optimal function is maxi-
mizing biomass production; a computer readable medium as
described above in which the optimal property is maximal
internal yield of ATP; a computer readable medium as
described above in which the solvent capacity accounts for
ribosome density in the cells in the cell culture as a measure
of ribosomal-, enzyme associated-, and non-metabolic-pro-
teins in the cells; a computer readable medium as described
above in which the solvent capacity accounts for mitochon-
dria as a subcellular compartment in the cells in the cell
culture; a computer readable medium as described above in
which the cells are human cells; a computer readable
medium as described above in which the cells are cancer
cells; and a computer readable medium as described above
that comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system.

According to further embodiments, a device is provided
that comprises the computer-readable medium described
according to any embodiment herein, and a processor for
executing the instructions on the computer-readable medium
for achieving an optimal function of a biochemical reaction
network in cells in a cell culture. As above, the instructions,
when executed by a processor, cause the processor to
implement a process implementing a computer model for
achieving an optimal function of a biochemical reaction
network in cells in a cell culture, comprising: (a) calculating
one or more optimal cell culture parameters in a cell culture
using a flux balance analysis constrained by a solvent
capacity of cells in the cell culture, wherein the optimal cell
culture parameter is calculated by determining an optimal
property of a biochemical reaction network comprising a list
of biochemical reactions by applying a computational opti-
mization method to one or more of the biochemical reactions
of the biochemical reaction network, the optimization
method comprising (i) altering one or more elements of the
one or more biochemical reactions in the biochemical reac-
tion network and re-computing the optimal property, and (ii)
repeating (i) until an optimal function is reached; and (b)
initiating or maintaining the optimal cell culture parameter
in the cell culture to achieve the optimal function of the
biochemical reaction network in the cells. As above, The
computer-readable medium may include in its various
embodiments instructions which, when executed by a pro-
cessor, cause the processor to implement a process imple-
menting a computer model for achieving any method
described in this document, including, without limitation,
the following: a computer readable medium as described
above in which the optimization method further comprises
calculating one or more of a maximum metabolic rate, an
optimal metabolite concentration and an enzyme activity by
applying a computational optimization method to a kinetic
model of a metabolic pathway; a computer readable medium
as described above wherein the optimal function is maxi-
mizing biomass production; a computer readable medium as
described above in which the optimal property is maximal
internal yield of ATP; a computer readable medium as
described above in which the solvent capacity accounts for
ribosome density in the cells in the cell culture as a measure
of ribosomal-, enzyme associated-, and non-metabolic-pro-
teins in the cells; a computer readable medium as described
above in which the solvent capacity accounts for mitochon-
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dria as a subcellular compartment in the cells in the cell
culture; a computer readable medium as described above in
which the cells are human cells; a computer readable
medium as described above in which the cells are cancer
cells; and a computer readable medium as described above
that comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system. The device
also may comprise additional components for implementa-
tion of the instructions, including, without limitation one or
more sensors, such as pH, gas (e.g. O, or CO,), chemical or
temperature sensors, one or more culture vessels, one or
more heating elements or cooling elements, reservoirs for
storing storing cell culture medium, cell culturing ingredi-
ents or an analytical composition (e.g., a composition useful
in testing a cell culture parameter) and one or more mecha-
nisms for dispensing the storing cell culture medium, cell
culturing ingredients or an analytical composition into a cell
culture or other container, such as a cuvette, or for taking
and/or analyzing samples from one or more cell culture
vessels, including, mechanical, fluidic and robotic mecha-
nisms, a display (e.g., a monitor); one or more analytical
devices, such as a spectrophotometer for measuring cell
density and/or the results of an analytical assay; and one or
more communication subsystems for receiving or transmit-
ting data, including, without limitation wired communica-
tion devices, such as Ethernet, modem, FIREWIRE, Uni-
versal Serial Bus (USB), and THUNDERBOLT devices, or
wireless communication devices such as BLUETOOTH or
802.11g or n protocol devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1—FEstimating the crowding coeflicients of E. coli
metabolic enzymes: (a) Distribution of turnover rates of £.
coli enzymes as obtained from the BRENDA data base
(Schomburg I, Chang A, Schomburg D: BRENDA, enzyme
data and metabolic information. Nucleic Acids Res 2002,
30:47-49); (b) Distribution of crowding coefficients among
a hundred E. coli enzymes, as obtained using Eq. 4 in
Example 1.

FIG. 2—The signatures of the predicted metabolic switch:
The glucose uptake rate (a) and growth rate (b) as a function
of the glucose uptake capacity, as obtained from the
FBAwWMC model. The line represents the average behavior
and the error bars represent the standard deviation over
1,000 choices of crowding coefficients. (¢) Flux ratios
illustrating the switch in metabolic efficiency objective from
low to high growth rates. At low growth the biomass rate per
unit of uptake rate (circles) is at a maximum, while the
biomass rate per unit of average rate is at a maximum at high
growth rates (squares). (d) Acetate excretion rate as a
function of the growth rate. At high growth rates the
prediction for acetate excretion is sensitive to the crowding
coeflicients uncertainty, resulting in the large error bars.

FIG. 3—Predicted vs. measured metabolic fluxes in the £.
coli central metabolism. Comparisons between the
FBAwMC-predicted and measured fluxes as a function of
growth/dilution rates for selected reactions in the central
carbon metabolism of . coli. FIG. 3A shows a schematic of
the central metabolism pathways. Labels B to L in FIG. 3A
denote the experimental flux measurements shown in FIGS.
3B-3L, respectively. The experimental flux measurements
were performed at dilution rates 0.1, 0.25, 0.4, 0.55 and 0.72
h'. Selected reactions of glycolysis, the first reaction of the
pentose phosphate pathway (zwf), the TCA cycle, acetate
excretion pathway and the reactions catalyzed by ppc and
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aceE connecting the glycolytic- and TCA pathways are
shown. The solid black circles represent the denoted
metabolites while the black arrows represent metabolic
reactions labeled by the genes encoding the enzymes cata-
lyzing the respective reactions (see Table 1 in Example 1 for
the list of abbreviations and information on enzymes
encoded by listed genes). The error bars for predicted fluxes
indicate the standard deviation over 1,000 choices of the
crowding coeficients among the list of values estimated for
-100 E. coli enzymes, whereas the error bars for the
experimental fluxes represent the standard deviations for
three independent measurements.

Comparison of measured metabolic fluxes and in-vitro
enzyme activities. FIG. 4A shows a schematic of the central
metabolism pathways. Labels B to S in FIG. 4A denote the
measured flux rates shown in FIGS. 4B-4S, respectively.
Measured flux rates (mmol/h/g dry biomass) and in vitro
enzyme activities (U/mg protein) on two separate Y-axes of
selected reactions in the central metabolism of . coli are
shown as a function of growth/dilution rates (X-axis). All
labels are as in FIG. 3. The error bars for the experimental
flux and enzyme activity plots are a result of three indepen-
dent measurements.

FIG. 5—Comparison of measured metabolic fluxes,
enzyme activities, and relative mRNA levels. FIG. 5A shows
a schematic of the central metabolism pathways. Labels B to
S in FIG. 5A denote the measured flux rates shown in FIGS.
5B-5S, respectively. Measured flux rates (mmol/h/g dry
biomass), in vitro enzyme activities (U/mg protein), and
gene expression levels (log ratio) on three separate Y-axis of
selected reactions in the central metabolism of . coli are
shown as a function of growth/dilution rates (X-axis). All
labels are as in FIG. 4. The error bars for the experimental
flux and enzyme activity plots are a result of three indepen-
dent measurements. For enzymes encoded by more than one
gene (isozymes or enzyme complexes) we report the mRNA
levels of more than one gene: pfkA and pfkB; pykA and
pykF; aceE and aceF; sucABCD; and fumA and fumC.

FIG. 6—Growth (Agqo,,) and residual pO2 concentra-
tions profile of £. coli MG 1655 at various dilution rates in
M9 minimal medium supplemented with 0.2% glucose.
Biomass samples for intracellular enzyme activity, gene
expression and flux determination were harvested at the end
of each major dilution rates indicated by constant A,
(optical densities) and pO, concentrations in the growth
medium.

FIG. 7—Overview of STEM analysis showing all profiles
considered. The profiles that are colored had a significant
number of genes assigned, and similar profiles that were
significant have the same color.

FIG. 8—FIGS. 8A-8C show Cluster 1 (Profiles 27, 36,
and 47 from FIG. 7) and FIG. 8D shows GO results.

FIG. 9—FIGS. 9A-9B show Cluster 2 (Profiles 5 and 6
from FIG. 7) and FIG. 9C shows GO results.

FIG. 10—FIGS. 10A-10B show Cluster 3 (Profiles 25 and
28 from FIG. 7) and FIG. 10C shows GO results.

FIG. 11—FIG. 11 A shows Cluster 4 (Profile 12 from FIG.
7) and FIG. 11B shows GO results.

FIG. 12—FIG. 12A shows Cluster 5 (Profile 42 from FIG.
7) and FIG. 12B shows GO results.

FIG. 13—Predicted and measured maximum growth rates
comparison. (a) Comparison between the predicted- (Y-axis)
and measured (X-axis) growth rates p of E. coli MG 1655
grown in M9 minimal medium with different carbon
sources. For a perfect match between experiments and
theory the symbols should fall on the black diagonal. The
symbols indicate the carbon substrate identified in the leg-



US 9,449,144 B2

7

end. The predicted growth rates were obtained using
<a>=0.0040 hour DW/mmol. The error bars represent stan-
dard deviation over 1000 sets of specific a, parameters. (b)
Same plot for single gene deletion E. col/i mutants growing
in glucose, the deleted genes being indicated in the legend.
The mutant growth rates pu~ are given relative to the pre-
dicted and measured maximum growth rate p of wild type E.
coli cells growing in glucose-limited medium.

FIG. 14—F. coli growth profile, and predicted vs. mea-
sured hierarchy of substrate utilization (a) the absolute
concentration and maximal growth rates of a batch culture of
E. coli cells grown in M9-minimal medium containing an
equal ratio of glucose, maltose, galactose, glycerol, and
lactate is shown, together with the pH and oxygen concen-
tration level. (b) The measured concentration of the indi-
cated carbon sources in the growth medium. The growth
experiments were performed in triplicate and averages and
standard deviations are shown here. The three substrate
utilization phases, phase 1 (exclusive glucose), phase 2
(mixed substrate) and phase 3 (glycerol and acetate) are
indicated. (c) Predicted substrate uptakes from the growth
medium based on the FBAWMC model. The color coding for
substrate utilization curves is identical in panels b and ¢, and
the error bars represent the standard deviations of the data
analyzed from the samples collected from three individual
bioreactor runs.

FIG. 15—Comparison between the gene expression pro-
files and predicted substrate uptake rates. FIG. 15A shows a
schematic of the central metabolism pathways for substrate
uptake. Labels B to M in FIG. 15A denote the profiles in
FIGS. 15B-15M, respectively. FIGS. 15B, 15D, 15F, 15H,
15J and 15L represent the measured relative gene expression
profiles as a function of time (in hrs). FIGS. 15C, 15E, 15G,
151, 15K and 15M represent the predicted substrate uptake
profiles (mmol/min g DW) also as a function of time (in hrs).
Of the carbon sources present in the original growth
medium, the uptake and entry points of glucose, maltose,
galactose, glycerol, and lactate into the E. coli glycolytic
pathway and citric acid cycle are shown. Acetate is initially
produced and later consumed by E. coli cells growing in
batch culture. All other substrates are shown in black and the
genes encoding for various enzymes catalyzing the transport
and degradation of intermediary substrates are also itali-
cized. The description of genes responsible for uptake and
utilization of listed carbon sources, their biological roles,
and description of substrate entry mechanisms are detailed
in FIG. 20. mRNA expression profiles of genes encoding
metabolic transporters and enzymes specifically involved in
galactose-, glucose-, glycerol-, lactate-, acetate- and maltose
metabolism are shown. Gene expression values (on y-axis)
in the time series microarray data are the calculated fold-
changes for each time point relative to the geometric mean
of the hybridization intensity of all time points for each gene
and are expressed as log 2. The low values represent lower
gene expression, while higher values represent higher gene
expression.

FIG. 16—Analysis of microarray expression data. Hier-
archical clustering with optimal leaf ordering identifies three
major expression modes. Relative gene expression values
from the highest (dark gray) to the lowest (light gray) are
shown, as indicated by the left side of the color scale bar (+4
to —4). Expression mode A: genes that are upregulated until
4.5 hrs; Expression mode B: genes with peak expression at
6 hr and after 7.5 hrs; and Expression mode C: genes with
peaks at 3.5 hr and after 7.5 hrs. Other boxes indicate
upregulation of maltose and glycerol regulons. The temporal
order of the three phases of substrate utilization is shown (as
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in FIG. 14). In the bottom matrix the overall correlation of
expression profiles at the given time points are compared to
that of obtained in mid-log batch cultures of the indicated
single carbon-limited media, as indicated by the right side of
the color scale bar (+0.5 (dark gray-high) and -0.5 (light
gray-low)).

FIG. 17—Distribution of the a, coeflicients as obtained
from an independent estimate for about 100 E. coli enzymes.
The arrow indicates the value of <a> obtained from the fit to
the growth rate data.

FIG. 18—Principal component analysis of the microarray
data from time-series experiment on mixed-substrate
medium.

FIG. 19—Gene expression profiles of various genes
known to be up-regulated during stationary phase stress
response.

FIG. 20 is a table showing major functions and reactions
catalyzed by the transporters/enzymes encoded by the genes
involved in substrate uptake, as shown in FIG. 15

FIG. 21 is a schematic representation of Saccharomyces
cerevisiae glycolysis.

FIG. 22—Hypothetical three metabolite pathway: The
inset shows a hypothetical three metabolite-containing path-
way with two reactions. The main panel displays the path-
way rate as a function of the concentration of the interme-
diate metabolite, relative to Ro (defined in the text). Of note,
at an intermediate metabolite concentration [M2]* the path-
way rate achieves a maximum. The plot was obtained using
the kinetic parameters indicated in the text.

FIG. 23—S. cerevisiae glycolysis: (A) Schematic repre-
sentation of glycolysis in S. cerevisiae. Metabolites: GLCX,
external glucose; GLC, glucose; G6P, glucose 6-phosphate;
F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate;
DHAP, glycerone phosphate; GAP, D-glyceraldehyde
3phosphate; BPG, 1,3-bisphosphoglycerate; and PEP, phos-
pho-enol-pyruvate. Reactions: hxt, glucose transport; hk,
hexokinase; pgi, phosphogluco isomerase; pjk, phospho-
fructokinase; aid, fructose 1,6-bisphosphate aldolase; tpi,
triosephosphate  isomerase; gapdh, D-glyceraldehyde
3-phosphate dehydrogenase; IpPEP, reactions from BGP to
PEP; pk, pyruvate kinase; and g3pdh, glycerol 3-phosphate
dehydrogenase. (B,C,D) The predicted glycolysis rates as a
function of the concentrations of intermediary metabolites in
the S. cerevisiae glycolysis pathway (in mM). The experi-
mentally determined metabolite levels (from Hynne F, Dano
S, Sorensen P G (2001) Full-scale model of glycolysis in
Saccharomyces cerevisiae. Biophys Chem 94: 121-163) are
indicated by the triangles. The dashed lines indicate the
concentration intervals resulting in 50% or more of the
maximum rate. Measured concentration (mM), measured
activity (relative units)

FIG. 24—Correlation between predictions vs. experimen-
tal data: (A) The predicted metabolite concentrations are
plotted as a function of the experimentally determined
values (black symbols). The error bars represent the standard
deviations, upon generating 100 random sets of kinetic
parameters. The solid line corresponds with the coincidence
of measured and predicted values, indicating a strong cor-
relation between them. (B) The predicted enzyme activities
are plotted as a function of the experimentally determined
values, measured in units of the glycolysis rate. The error
bars represent the standard deviations, upon generating 100
random sets of kinetic parameters. The solid line corre-
sponds with the coincidence of measured and predicted
values, indicating a strong correlation between them. In both
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cases the red and blue symbols were obtained using the more
general optimization objective R=(1-¢)/Z,_ ~(a,r,)¥, with
H=0.1 and 10, respectively.

FIG. 25: A graph showing cell component densities at
different proliferation rates

FIG. 26: Metabolic switch with increasing proliferation
rate. FIG. 26A is a representation of the flux of selected
metabolic reactions and pathways at different proliferation
rates, in cells utilizing glycolysis with net zero ATP produc-
tion. Labels B to W in FIG. 26A denote the rate of the
indicated reactions (vertical axis, in units of
mM/min=mmol/min/[) as a function of the proliferation
rate (horizontal axis, in units of 1/day) shown in FIGS.
26B-26W, respectively. The gray shadow background con-
tains reactions taking place in the mitochondria.

FIG. 27: Selected reactions contributing to ATP genera-
tion at different proliferation rates. Contribution of ATP
synthase, phosphoglycerate kinase (PGK), pyruvate kinase
(PK) and formate-tetrahydrofolate ligase (FTHFL) to ATP
generation in cells at low (0.03/day, left) and high (2.52/day,
right) proliferation rates. The ATP consumed for cell main-
tenance (black) is shown as a reference. FIG. 27A: cells
using the alternative glycolysis pathway with net zero ATP
production. FIG. 27B: cells using the standard glycolysis.

FIG. 28: Selected reactions contributing to ATP genera-
tion at different proliferation rates in cells using the alter-
native glycolysis pathway with net zero ATP production,
after removing the molecular crowding constraint. Contri-
bution of ATP synthase, phosphoglycerate kinase (PGK),
pyruvate kinase (PK) and formate-tetrahydrofolate ligase
(FTHFL) to ATP generation in cells at low (0.03/day, left)
and high (2.52/day, right) proliferation rates. The ATP
consumed for cell maintenance (black) is shown as a refer-
ence.

FIG. 29: Novel ATP producing pathway. FIG. 29A is a
schematic diagram of the ATP producing pathways
described herein. FIG. 29A is too large to reproduce, and is
broken down into four enlarged parts as shown in FIGS.
29B-29E, corresponding to parts a) through d), respectively
in FIG. 29A. The fate of the high glycolysis flux in cells
utilizing the alternative glycolysis. The squared panels show
the rate of the indicated reaction (vertical axis, in units of
mM/min=mmol/min/[) as a function of the proliferation
rate (horizontal axis, in units of 1/day). The gray shadow
background contains reactions taking place in the mitochon-
dria. Metabolite and enzyme abbreviations: 3-phosphoglyc-
erate (3pg), phosphoglycerate dehydrogenase (PHGDH),
3-phosphohydroxypyruvate (3php), L-glutamate (glu-L),
phosphoserine transaminase (PSAT), a-ketoglutarate (aKg),
L-phosphoserine (pser-L.), phosphoserine phosphatase
(PSPH), L-serine (ser-L), tetrahydrofolate (thf), serine
hydroxymethyltransferase (SHMT), glycine (gly), 5,10-
methylene tetrahydrofolate (mlthf), methylenetetrahydrofo-
late dehydrogenase (MTHFD), 5,10-methenyltetrahydrofo-
late (methf), methenyltetrahydrofolate cyclohydrolase
(MTHFC), 10-formyltetrahydrofolate (10thf), formate (for),
formate-tetrahydrofolate ligase (FTHFL), S-aminomethyl-
dihydrolipoylprotein (alpro), dyhydrolipolprotein (dhlpro),
lipoylprotein (Ipro), S-aminomethyldihydrolipoamide (al-
pam), dihydrolipoamide (dhlam), and lipoamide (lpam).
glycine-cleavage complex with lipoylprotein (GCCam,
GCCbim and GCCcem) and glycine-cleavage complex with
lipoamide (GCC2am, GCC2bim and GCC2 cm).

FIG. 30: Kinetic properties of the reaction cycle shown in
FIG. 29C. Maximum ATP production rate of cycle in FIG.
29C as a function of Eqn,AEmm+Easmmen)- The gray
circles were obtained using reported kinetic parameters. The
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black squares and error bars represent the median and 90%
confidence interval over 100 simulated kinetic parameters,
where the logarithm of each kinetic parameter was sampled
uniformly from a value two fold lower to a value two fold
higher than the reported values.

FIG. 31: Transcriptional upregulation of the novel path-
way in a Myc-induced tumor. The original is in color,
showing red and green colors and is separated into green and
red channels for grayscale display. FIG. 31A shows green
colors and FIG. 31B shows red colors. Gene expression
profiles of genes in the novel ATP producing pathway at
different stages of a doxycycline-inducible Myc driven liver
cancer. Controls are samples from adjacent normal tissue,
“Pre. Tumor” are tumor samples taken 4-5 weeks after Myc
induction, “Tumor” are tumor samples taken 8-10 weeks
after Myc induction and “Regression” are tumor samples
taken 3 days after removal of Myc induction. Color intensity
is proportional to change in expression relative to the
average across all samples, with red color indicating
increased- and green color indicating decreased gene expres-
sion. Repeated gene names represent different microarray
probes for the same gene.

DETAILED DESCRIPTION

All ranges or numerical values stated herein, whether or
not preceded by the term “about” unless stated otherwise are
considered to be preceded by the term “about™ to account for
variations in precision of measurement and functionally
equivalent ranges.

As used herein, the terms “comprising,” “comprise” or
“comprised,” and variations thereof, are meant to be open
ended. The terms “a” and “an” are intended to refer to one
or more.

Methods for conducting flux balance calculations for cell
cultures are provided. In one aspect, cytoplasmic molecular
crowding (synonymous with solvent capacity) in cells in a
cell culture are used in flux balance calculations. In another
aspect, reaction kinetics (e.g., enzyme kinetics) parameters
of reactions taking place in cells of the cell culture are used
along with molecular crowding considerations to conduct
flux balance calculations. The methods provided herein are
useful in optimizing cell growth conditions and/or one or
more reactions in a cell culture system. The methods are
useful in research and commercial applications where it is
desirable to optimize cell culture conditions with respect to
growth rate of cells (e.g., to maximize biomass production),
and/or optimizing certain biochemical reactions (including
enzymatic and non-enzymatic biochemical reactions) or
activities of cells in a culture system. As an example, for
production of biomass, with or without consideration of the
production of a certain reaction product in the cell, such as
sugars, oils, fatty acids, alcohols, polysaccharides, poly-
mers, etc., cell growth can be maximized by optimizing one
or more biochemical reactions in the cell by maintaining cell
growth conditions within certain tolerances based on the flux
balance calculations described herein. Production of certain
metabolites by a cell, such as a wild type or mutant cell, can
be optimized by the flux balance analysis methods described
herein. As an example, production of fatty acids or ethanol
can be optimized for biofuel production. Production of
product(s) of a recombinantly-modified cell can be opti-
mized by the methods described herein. Metabolic engineer-
ing involves the modification by random mutation or by
directed methods, such as by recombinant methods, to
optimize the production of certain metabolites or products of
cellular metabolism. Production of sugars, alcohols, fatty

2 <
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acids, triglycerides, polymers or subunits thereof, or literally
any cellular component, including reaction starting materi-
als, intermediates or products, can be optimized using the
methods described herein. The methods described herein
provide significantly increased accuracy in flux balance
calculations as compared to prior methods that do not
consider cytoplasmic molecular crowding by itself or with
reaction kinetics of biochemical reactions within the cells.
In a flux balance model of cellular metabolism a cell’s
metabolic network is mathematically represented by the
stoichiometric matrix, S, providing the stoichiometric
coeflicient of metabolite m (m=1, . .., M) in reaction i (i=
1,...,N) where M and N are the number of metabolites and
reactions, respectively. The cell is assumed to be in a steady
state, where the concentration of each intracellular metabo-
lite (other than those that constitute the biomass) remains
constant in time. Thus, the stationary reaction rates (fluxes)
consuming and producing a metabolite should balance,

M

v
Z Swifi =0,
P}

where, f; denotes the flux of reaction i. The study of the
solution space defined by (1) together with maximum capac-
ity constraints for the uptake rates of extracellular substrates
constitutes the basis of ‘flux balance analysis’ (FBA).

We extend this framework to consider the physical and
spatial constraints resulting from the very high intracellular
concentration of macromolecules. Given that the enzyme
molecules have a finite molar volume v, we can only fit a
finite number of them in a given volume V. Indeed, if n, is
the number of moles of the i enzyme, then

3 MvnsV

@

Equation (2) represents a constraint on the enzyme levels
n,, potentially affecting their maximum attainable values and
relative abundance. Dividing by cell mass M we can refor-
mulate this constraint in terms of the enzyme concentrations
E,=n,/M (moles/unit mass), resulting in

©)

where C=M/V=0.34 g/ml is the E. coli cytoplasmic density.
Equation (3) imposes a constraint on the maximum attain-
able enzyme concentrations and, therefore, we refer to it as
the enzyme concentration constraint. This constraint is
reflected in the metabolic fluxes as well. Indeed, an enzyme
concentration E, results in a flux f=b,E, over reaction i,
where the parameter b, is determined by the reaction mecha-
nism, kinetic parameters, and metabolite concentrations.
Therefore, the enzyme concentration constraint is reflected
in the metabolic flux constraint

2 Mafsl, Q)

where a,=Cv,/b, [Eq. 5], affecting the maximum attainable
fluxes and the flux distribution among different metabolic
reactions. From here on, we refer to this mathematical
framework as ‘flux balance analysis with molecular crowd-
ing’ (FBAWMC). Furthermore, since the coefficient a, quan-
tifies the contribution to the overall crowding by reaction i
we refer to it as the ‘crowding coefficient of reaction 1’, or
simply ‘crowding coefficient’.
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Accordingly, in one non-limiting aspect, a method of
optimizing one or more biological activities (for example
and without limitation, a growth rate, production of one or
more metabolic products or recombinant proteins) in a cell
in a cell culture is provided. The method comprises calcu-
lating an optimal cell culture parameter for one or more
biological activities in a cell in a cell culture by applying an
optimization method to a list of one or more reactions
representing or affecting the one or more biological activi-
ties, wherein the optimization method uses an intracellular
molecular crowding parameter for one or more elements
(e.g., enzyme, substrate, cofactor, etc.) of the one or more
reactions to calculate an optimal cell culture parameter for
the one or more biological activities in the cell; initiating or
maintaining the optimal cell culture parameter in a cell
culture. A cell culture parameter is a culture condition, for
example and without limitation, culture medium composi-
tion or physical characteristic of the culture, including
without limitation, concentration of, for example, one or
more of a carbon source, a nitrogen source, cofactors, salts,
buffers, nucleotides, amino acids, oxygen (e.g., pO,) and
products and/or byproducts of cellular metabolism, as well
as pH, CO,, temperature, cell density, osmolality, viscosity
and/or other physical parameter of the culture.

By “initiating or maintaining an optimal cell culture
parameter” it is meant that in the culture at its inception, or
at any time during cell culture, including at more than one
time point, continuously, substantially continuously or for
any duration or multiple durations, the “optimal cell culture
parameter or parameters are initiate or re-initiated. For
instance, at optimal cell culture conditions, a carbon source
might be at a specific concentration. The optimal concen-
tration of the carbon source is then periodically tested and,
if not at an optimal concentration, additional carbon source
is added to the culture to reach the optimal concentration. It
should be recognized that the optimal concentration of any
given cell culture constituent may change as optimal param-
eters are re-calculated based on readings of one or more cell
culture parameters over time. A person of skill in the art also
will recognize that, depending on the culture conditions, the
timing, duration and the method of initiating and/or main-
taining the cell culture parameter, and/or the method of
monitoring the concentration of the metabolite in the cul-
ture, the concentration of the metabolite may rise above or
below the exact calculated optimal concentration, and that
given the practicalities of implementation, a person of skill
in the art would recognize that “initiating and maintaining an
optimal concentration” means approximating that concen-
tration, as is practicable and acceptable in terms of the
desired outcome, such as maximum cell growth or produc-
tion of a product by the cell.

U.S. Pat. No. 7,127,379 provides one example of how the
methods described herein can be implemented (see also,
Edwards J. S., et al. (1999) Journal of Biological Chemistry,
274(25):17410 16). In that document, flux calculations are
used in the implementation of a method for directed evolu-
tion of a cell culture. The present methods, including con-
siderations of cytoplasmic cell crowding and/or reaction
kinetics, are not only applicable to the evolutionary methods
described in that patent, but more generally to optimizing
culture conditions with the goal of attaining an optimal,
desired outcome.

The methods described herein and steps thereof are typi-
cally of such complexity that they are preferably imple-
mented in a computer, and as such, a biochemical reaction
network can be designed for implementation in a computer
(in silico), e.g., by instructions executed by one or more
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processors. According to typical embodiments, the methods
described herein, including all or substantially all steps
thereof are performed in a computer and are therefore
considered to be “computer-implemented”. Following the
design of the reaction network, cell growth and/or produc-
tion of one or more cellular constituents can be optimized for
a genetically modified organism or a wild-type strain that
corresponds to the network used for the computer simula-
tions. Organisms may achieve the optimal behavior in a
non-unique fashion—that is there may be equivalent optimal
solutions.

Thus, in one aspect, methods are provided for determining
optimal functions of a comprehensive biochemical reaction
network in a living cell with respect to one or more functions
of a cell. The method can be performed by representing a
listing of the biochemical reactions in the network in a
computer; using optimization methods to calculate the opti-
mal properties of the network; altering the list of reactions
in the network and re-computing the optimal properties; and
repeating the altering step until the desired performance is
met. A person of skill in the computer programming arts can
design such as system using any of a number of available
programming languages and software tools available in the
computer programming field, including mathematical mod-
eling and/or object—oriented processes as are available.

In addition to in silico steps, according to one non-
limiting embodiment, the methods can further include steps
involving culturing a living cell, or a population of cells and
optimizing culture conditions to optimize cell growth and/or
production of a cellular constituent. In an additional embodi-
ment, these steps include constructing the genetic makeup of
a cell to contain the biochemical reactions which result from
repeating the altering step until the desired performance are
met; placing the cell constructed thereunder in culture under
the specified environment; and cultivating the cell for a
sufficient period of time and under conditions to allow the
cell to evolve to the determined desired performance.

Abiochemical reaction network is an interrelated series of
biochemical reactions that are part of a biochemical pathway
or linked biochemical pathways. Many biochemical reaction
networks have been identified such as metabolic reaction
networks, catabolic reaction networks, polypeptide and
nucleic acid synthesis reaction networks, amino acid syn-
thesis networks, energy metabolism and so forth. Other
types of biochemical reaction networks include regulatory
networks including cell signaling networks, cell cycle net-
works, genetic networks involved in regulation of gene
expression, such as operon regulatory networks, and actin
polymerization networks that generate portions of the cyto-
skeleton. Most of the major cell functions rely on a network
of interactive biochemical reactions.

To implement the methods described herein, the reaction
structure of a comprehensive, preferably substantially
whole, or most preferably whole biochemical reaction net-
work in an organism to be biochemically designed can be
reconstructed for computer simulations. A whole biochemi-
cal reaction network includes all of the biochemical reac-
tions of a cell related to a certain biochemical function. For
example a whole metabolic reaction network includes essen-
tially all of the biochemical reactions that provide the
metabolism of a cell. This is made possible with the advent
of whole genome sequencing. Biochemical reaction net-
works have been worked out for a number of organisms,
such as E. coli and S. cerevisiae, as shown in the Examples,
below. Metabolic reaction networks exemplify a universal
biochemical reaction network found in some form in all
living cells. A comprehensive biochemical reaction network
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is an interrelated group of biochemical reactions that affect
a detectable property, and that can be modified in a predict-
able manner with respect to the effect of such modifications
on the detectable property in the context of a living cell. For
example, a comprehensive biochemical reaction network
can include core reactions that effect the yield of a biomol-
ecule produced by the cell, even though the core reactions
include only a portion of the reactions in the whole bio-
chemical reaction network involved in yield of the biomol-
ecule, provided that computational methods can be used to
predict the effect of changes in the core biochemical reac-
tions on the yield in a living cell. A substantially whole
biochemical reaction network is an interrelated group of
biochemical reactions that are responsible for a detectable
property of a living cell. Substantially whole biochemical
reaction networks include core reactions as well as second-
ary reactions that have an effect on the detectable property,
even though this effect can be relatively minor. Changes in
substantially whole biochemical reaction networks can be
predicted using computational methods. The methods
described herein can also utilize the majority of reactions in
a whole biochemical reaction network, rather than a com-
prehensive, substantially whole, or whole biochemical reac-
tion network.

Optimal properties can be determined using the methods
described herein include, for example, glycerol uptake rate,
oxygen uptake rate, growth rate, sporulation occurrence
and/or rates, rates of scouring of rare elements under nutri-
tionally poor conditions, biomass, and yields of biomol-
ecules such as proteins, amino acids, carbohydrates, fatty
acids, alcohols, triglycerides, antibiotics, vitamins, amino
acids, and fermentation products. Optimal properties also
include, for example, yields of chiral compounds and other
low molecular weight compounds. Optimal properties also
include, for example, the maximal internal yields of key
co-factors, such as energy carrying ATP or redox carrying
NADPH and NADH. Optimal properties can also be defined
by a cellular engineer to include properties such as flux rates
through key reactions in the biochemical reaction network.
The methods described herein facilitate achievement of an
optimal performance related to one or more of the properties
to be achieved, such as a target growth rate or yield of a
cellular constituent or other product.

For implementation of the methods described herein,
biochemical reactions of a reconstructed biochemical reac-
tion network are represented in a computer by a listing of the
biochemical reactions in the reconstructed biochemical reac-
tion network. The listing can be represented in a computer
database, for example as a series of tables of a relational
database, so that it can be interfaced with computer pro-
cesses (e.g., functions and/or algorithms that are imple-
mented by software and/or hardware) that represent network
simulation and calculation of optimal properties.

The biochemical network reconstruction preferably is of
high quality. The process of high quality biochemical reac-
tion network, specifically metabolic reaction network,
reconstruction has been established (see, e.g., M. W. Covert,
et al. Trends in Biochemical Sciences, 26: 179 186 (2001);
Edwards J., et al. BMC Structural Biology, 1(2) (2000a);
Edwards J. S., et al., Journal of Biological Chemistry,
274(25):17410 16, (1999), Karp P. D. et al. ISMB 4:116 24,
(1996); Karp P. D. et al., Nucleic. Acids Res. 28(1):56 59
(2000); Ogata et al. Nucleic Acids Res. 27(1):29 34 (1999);
Schilling C. H. et al. J. Theor. Biol., 203(3): 249 83 (2000);
Selkov E. Jr. et al., Nucleic Acids Res., 26(1): 43 45 (1998);
and Selkov E. et al., Gene 197(1 2):GC11 26 (1997)). This
process typically involves the use of annotated genome
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sequences, and biochemical and physiological data. These
annotated genome sequences and biochemical and physi-
ological data can be found in any useful source. Careful
analysis of the reconstructed network is needed to reconcile
all the data sources used. Similar methods can be used for
the reconstruction of other biochemical reaction networks.

As illustrated in the Examples, below, the reconstructed
comprehensive, substantially whole, or whole biochemical
reaction network can then be used to determine optimal
properties of the comprehensive, substantially whole, or
whole biochemical reaction network, or portions thereof,
under specified and varying environmental conditions. This
determination allows the design of a biochemical reaction
network that achieves a desired performance in a specified
environment. In one embodiment, this can be combined with
steps for constructing the genetic makeup of a cell and
cultivating the cell to provide a method for developing a
recombinant cell, or a population of cells, that achieves the
desired performance.

Optimal properties of the comprehensive, substantially
whole, or whole biochemical reaction network, or portion
thereof, under a series of specified environments can be
determined using computational methods known as optimi-
zation methods. Optimization methods are known in the art
(see e.g., Edwards J. S., et al., Journal of Biological Chem-
istry, 274(25):17410 16, (1999)). The optimization methods
used in the methods described herein utilize linear and/or
no-linear optimization with linear constraints. The optimi-
zation with respect to the reaction rates is linear and we can
utilize any available package for linear optimization with
linear constraints to find the optimal reaction rates. The
optimization with respect to the metabolite concentrations in
non-linear and we can, for example, utilize simulated
annealing or other non-linear optimization packages with
linear constraints to find the optimal metabolite concentra-
tions.

The reconstructed metabolic network can be used to
perform quantitative simulations of the metabolic flux dis-
tribution in a steady state using established methods (see,
e.g., Bonarius et al., Trends in Biotechnology, 15(8): 308 14
(1997); Edwards J. S., et al., Metabolic flux Balance Analy-
sis, In: (Lee S. Y., Papoutsakis E. T., eds.) Metabolic
Engineering: Marcel Deker. P 13 57 (1999); and Varma A.
et al., Bio/Technology 12:994 98 (1994a)). Computer simu-
lations of the metabolic network can be performed under any
conditions. Furthermore, any reaction list can be simulated
in a computer by changing the parameters describing the
environment and the contents of the reaction list.

The metabolic capabilities of a reconstructed metabolic
network can be assessed using the established method of
flux balance analysis (FBA) (Bonarius et al., (1997);
Edwards et al., (1999); and Varma and Palsson (1994a)).
FBA is based on the conservation of mass in the metabolic
network in a steady state and capacity constraints (maximal
fluxes through the reactions) on individual reactions in the
network. Additionally, experimentally determined strain
specific parameters are also required, the biomass compo-
sition (Pramanik J. et al., Biotechnology and Bioengineer-
ing, 56(4): 398 421 (1997)) and the maintenance require-
ments (Varma A. et al, Applied and Environmental
Microbiology, 60(10): 3724 31 (1994b)). In addition to the
above parameters, cytoplasmic molecular crowding and/or
reaction kinetics are constraints placed on individual reac-
tions in the reaction network. These factors are then used to
calculate the flux distribution through the reconstructed
metabolic network.
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More specifically, the definition of these factors leads
mathematically to a closed solution space to the equations in
which all feasible solutions lie. There are thus many possible
solutions (flux distributions) to any problem. The ‘best’ or
optimal solution within the set of all allowable solutions can
then be determined using optimization procedures and a
stated objective. The optimization procedure used may be
linear programming and the objective may be the optimal
use of the biochemical reaction network to produce all or
some biomass components simultaneously. Non-limiting
examples of these optimization procedures are established
and have been published (Varma et al. (1994a); Bonarious
(1997); and Edwards et al. (1999)). The comparison of the
calculated behavior based on the optimal growth objective to
the experimental data is favorable in the majority of cases
(Varma (1994b); Edwards J. S., et al., Nat Biotechnol.,
19(2): 125 30 (2001a); and Edwards, et al. Biotechnol
Bioeng. 2002; 77(1):27-36), though, as shown in the
examples below, the addition of constraints relating to
cytoplasmic molecular crowding and/or reaction kinetics,
leads to superior tracking of in silico data to experimental
data. In other words, these solution confinement and opti-
mization procedures lead to a prediction of the optimal uses
of'a biochemical reaction network to support cellular growth
and/or desired biological function.

Steady state metabolic flux distributions are mathemati-
cally confined to the solution space defined for a given
reconstructed metabolic network, where each solution in the
solution space corresponds to a particular flux distribution
through the network or a particular metabolic phenotype
(Edwards and Palsson (1999)). Under a single specified
growth condition, the optimal metabolic flux distribution
can be determined using linear programming (LP) or other
related and/or useful approaches for calculating optimal
solutions of such problems.

More specifically, the definition of these factors leads
mathematically to a closed solution space to the equations in
which all feasible solutions lie. There are thus many possible
solutions (flux distributions) to any problem. The ‘best’ or
optimal solution within the set of all allowable solutions can
then be determined using optimization procedures and a
stated objective. The optimization procedure used may be
linear programming and the objective may be the use of the
biochemical reaction network such as to produce biomass
components at a maximal rate. Non-limiting examples of
these optimization procedures are established and have been
published (Varma and Palsson (1994a); Bonarious (1997);
and Edwards et al. (1999)). The comparison of the calculated
behavior based on the optimal growth objective to the
experimental data is favorable in the majority of cases
(Varma (1994b); Edwards J. S., et al. Nat Biotechnol., 19(2):
125 30 (2001a); and Edwards, et al., Biotechnol Bioeng.
2002; 77(1):27-36), though, as shown in the examples
below, the addition of constraints relating to cytoplasmic
molecular crowding and/or reaction kinetics, leads to supe-
rior tracking of in silico data to experimental data. In other
words, these solution confinement and optimization proce-
dures lead to a prediction of the optimal uses of a biochemi-
cal reaction network to support cellular growth and/or
desired biological function.

The metabolic reconstruction is then used to predict the
optimal flux distribution within the given constraints. Using
the optimization procedure, the properties of the correspond-
ing actual biochemical reaction network may not be optimal
or the same as desired from a practical standpoint. The
simulated reconstructed network and its synthesis in an
organism may not display the optimal solution desired, also
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referred to herein as the desired optimal performance or
desired optimal function. Lack of optimality may be due to
the fact that:

The natural organism with an intact network has never
experienced the environmental conditions of interest and
never undergone growth competition and selection in this
environment, or

The wild type network is perturbed from its optimal state
by genetic manipulations, through the deletion/addition of a
new reaction from/to the network.

The in silico methods described herein are designed to
resolve the second cause of lack of optimality, by altering
the reactions in the network until a desired performance is
achieved. Culturing methods can be used to resolve the first
cause of the lack of optimality related to growth competition
and selection.

As mentioned above, after calculation of the optimal
properties, one or more cellular parameters may be changed,
in order to achieve a desired performance, growth, metabolic
or production goal. In one instance, a metabolic engineer can
alter the reaction list in the network, or an algorithm can be
developed that automatically alters one or more reactions in
the reaction list to achieve a desired performance. After
alteration of one or more growth parameters and/or the
biochemical list, optimal properties of this network under
given environmental conditions can be calculated. For opti-
mizing performance, this typically involves repeated moni-
toring of one or more culture parameters, along with
repeated calculations based on the latest culture parameters
and/or trends. In the context of engineering/evolving a cell,
this is an iterative design procedure that may require many
different versions of the reaction list until the desired per-
formance is achieved. The desired performance is a quali-
tative characteristic or quantitative value for a property
calculated using an optimization procedure. Many properties
for which a desired performance can be achieved are known
in the art. For example, a desired performance can be a
desired growth rate or a desired yield of a biomolecule such
as an enzyme or an antibiotic.

As mentioned above, after calculation of the optimal
properties, a metabolic engineer can alter the reaction list in
the network, or an algorithm can be developed that auto-
matically alters one or more reactions in the reaction list, to
achieve a desired performance. After alteration of the bio-
chemical list, optimal properties of this network under given
environmental conditions can be calculated. This is an
iterative design procedure that may require many different
versions of the reaction list until the desired performance is
achieved. The desired performance is a qualitative charac-
teristic or quantitative value for a property calculated using
an optimization procedure. Many properties for which a
desired performance can be achieved are known in the art.
For example, a desired performance can be a desired growth
rate or a desired yield of a biomolecule such as an enzyme
or an antibiotic.

The optimization method may be carried out using a
computer system. The computer system typically includes a
processor for executing instructions, a database that pro-
vides information regarding one or more biochemical reac-
tion networks of at least one organism; a user interface
capable of receiving a selection of one or more biochemical
reaction networks for optimization and/or comparison, and
capable of receiving a selection of a desired performance;
and a process (e.g., software, instructions) for carrying out
the optimization method calculations and recalculations.
Furthermore, the computer system may include a process for
performing biochemical reaction network reconstruction.
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The computer system can be a stand-alone computer, a
portable computer or PDA, such as a laptop computer or a
smart phone, or a conventional network system including a
client/server environment and one or more database servers.
A number of conventional network systems, including a
local area network (LAN) or a wide area network (WAN),
and including wireless and/or wired components, are known
in the art. Additionally, client/server environments, database
servers, and networks are well documented in the technical,
trade, and patent literature. For example, the database server
can run on an operating system such as UNIX, running a
relational database management system, a World Wide Web
application, and a World Wide Web Server.

The information in the database may include biomolecu-
lar sequence information regarding biomolecules involved
in the biochemical reactions of the biochemical reaction
network, for example information regarding multiple
biomolecular sequences such as genomic sequences. At least
some of the genomic sequences can represent open reading
frames located along one or more contiguous sequences on
each of the genomes of the one or more organisms. The
information regarding biochemical reaction networks can
include information identifying those biochemical reaction
networks to which a biomolecular sequence plays a role and
the specific reactions in the biochemical reaction network
involving the biomolecule.

The database can include any type of biological sequence
information that pertains to biochemical reactions. For
example, the database can be a nucleic acid sequence
database, including ESTs and/or more preferably full-length
sequences, or an amino acid sequence database. The data-
base preferably provides information about a comprehen-
sive, substantially whole, or whole biochemical reaction
network. For example, the database can provide information
regarding a whole metabolic reaction network. The database
can provide nucleic acid and/or amino acid sequences of an
entire genome of an organism.

The database can include biochemical and sequence infor-
mation from any living organism and can be divided into
two parts, one for storing sequences and the other for storing
information regarding the sequences. For example, the data-
base can provide biochemical reaction information and
sequence information for animals (e.g., human, primate,
rodent, amphibian, insect, etc.), plants, or microbes. The
database may be annotated, such as with information regard-
ing the function, especially the biochemical function, of the
biomolecules of the database. The annotations can include
information obtained from published reports studying the
biochemistry of the biomolecules of the database, such as
specific reactions to which a biomolecule is involved,
whether the biomolecule is or encodes an enzyme, whether
the sequence is a wild-type sequence, etc.

The annotations and sequences of the database can pro-
vide sufficient information for a selected biochemical geno-
type of an organism to be identified. A biochemical genotype
is a grouping of all the nucleic acid or amino acid sequences
in a selected biochemical process of an organism. For
example, a metabolic genotype is a grouping of all the
nucleic acid and/or amino acid sequences of proteins
involved in metabolism. Methods for identifying metabolic
genotypes have been described in the literature (see e.g.
Edwards and Palsson 1999).

The database can be a flat file database or a relational
database. The database can be an internal database, or an
external database that is accessible to users, for example a
public biological sequence database, such as GenBank or
GenPept. An internal database is a database maintained as a



US 9,449,144 B2

19

private database, typically maintained behind a firewall, by
an enterprise. An external database is located outside an
internal database, and is typically maintained by a different
entity than an internal database. In one non-limiting embodi-
ment, the methods rely on information stored both in an
internal and an external database. In such a system, propri-
etary information can be maintained in an internal database,
but the system also can obtain information from one or more
external databases. A number of external public biological
sequence databases are available and can be used with the
methods described herein. For example, many of the bio-
logical sequence databases available from the National
Center for Biological Information (NCBI), part of the
National Library of Medicine, can be used with the current
invention. Other examples of external databases include the
Blocks database maintained by the Fred Hutchinson Cancer
Research Center in Seattle, and the Swiss-Prot site main-
tained by the University of Geneva. Additionally, the exter-
nal databases can include a database providing information
regarding biochemical reactions, including databases of
published literature references describing and analyzing
biochemical reactions. Where a database included in the
computer systems of the present invention is a public
computer database that does not identify information that is
relevant for a particular biochemical reaction network, the
computer system either includes a function for performing
biochemical reaction network reconstruction, or includes
identification of the database entries that pertain to a par-
ticular biochemical reaction network. Additionally, there are
several databases with biochemical pathway information,
these databases include, for non-limiting example, EcoCyc,
KEGG, WIT, and EMP. These databases can be used to
provide the information to reconstruct the metabolic models.

In addition to the database discussed above, the computer
system typically includes a user interface capable of receiv-
ing a selection of one or more biochemical reaction net-
works for optimization and/or comparison, and capable of
receiving a selection of an optimal performance. The inter-
face can be a graphic user interface where selections are
made using a series of menus, dialog boxes, and/or select-
able buttons, for example. The interface typically takes a
user through a series of screens beginning with a main
screen. The user interface can include links that a user may
select to access additional information relating to a bio-
chemical reaction network.

The function of the computer system that carries out the
optimization methods typically includes a processing unit
that executes a computer program product (process) that
includes a computer-readable program code embodied on a
computer-readable medium and/or present in a memory
function connected to the processing unit. The memory
function can be, for example, a disk drive (optical and/or
magnetic), Random Access Memory, Read Only Memory, or
Flash Memory.

The computer program product, including instructions,
that is read and executed by a processing unit of a computer
system, includes modules (sub-programs) and processes/
functions, such as a computer-readable program code
embodied on a computer-readable medium for implement-
ing aspects of the computer program, including, without
limitation, functions and algorithms. The program code is
capable of interacting with a database, for example, as
described above, and typically effects the following steps
within the computing system: providing an interface for
receiving a selection of a desired performance of the net-
works; determining the desired optimal properties, display-
ing the results of the determination, and altering the bio-
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chemical reaction network, before recalculating optimal
properties of the biochemical reaction network, and repeat-
ing the process until a desired performance is achieved.
Altering the biochemical reaction network can be performed
based on an alteration identified by a user, or can be
performed automatically by the program code. The com-
puter program can further provide an identification of data-
base entries that are part of a reconstructed biochemical
network, or can perform biochemical reaction network
reconstruction. Furthermore, the computer program can pro-
vide a function for comparing biochemical reaction net-
works to identify differences in components and properties.
Lastly, the computer program may comprise a process or
module for receiving data obtained from a cell culture
(automatically or manually) and a process or module for
controlling one or more external devices, such as a solenoid
valve, for controlling a rate of input into a culture of one or
more culture medium constituents, such as water, sugars,
oxygen, carbon dioxide, buffers, chelating compounds, etc.,
or for controlling other physical or chemical parameters of
the culture, such as a heating device or stirrer.

The computer-readable program code can be generated,
for example, using any well-known compiler that is com-
patible with a programming language used to write software
for carrying out the methods of the current invention. Many
programming languages and software programs are known
that can be used to write software to perform the computa-
tional methods described herein, such as, for example and
without limitation MATLAB® (The Mathworks, Inc.,
Natick, Mass.), or similar software.

As mentioned above, an aspect of the methods described
herein can further include steps that involve adaptive evo-
Iution of a cultured strain to achieve a desired performance.
Virtually any cell can be used with the methods described
herein including, for example, a prokaryotic cell, or a
eukaryotic cell such as a fungal cell or an animal cell
including a cell of an animal cell line. However, a biochemi-
cal reaction network of the cell, or the cell of a closely
related organism, must be sufficiently characterized to allow
a high quality reconstruction of the comprehensive, substan-
tially whole, and/or whole biochemical reaction network in
a computer. Preferably, essentially the entire genome of the
organism has been sequenced and genes encoding biomol-
ecules, typically proteins, involved in the biochemical reac-
tion network have been identified.

The genetic makeup of a cell can be constructed to contain
the biochemical reactions that meet the desired performance
to produce a cell with a potential to meet the desired
performance. This can be achieved using the indigenous list
of reactions in the cell and by adding and subtracting
reactions from this list using genetic manipulations to
achieve the reaction list capable of achieving the desired
performance criteria, identified by the steps performed in
silico described above. For example, reactions can be added
or subtracted from the list by adding, changing, or deleting
all or portions of one or more genes encoding one or more
biomolecules involved in the reaction, for example by
adding, changing, or deleting protein coding regions of one
or more genes or by adding, changing, or deleting regulatory
regions of one or more genes. In addition, for example,
reactions can be added or subtracted from the list by altering
expression of regulatory components (e.g., transcription
factors) that effect the expression of one or more biomol-
ecules involved in one or more reactions of the reaction list.
The resulting engineered cell may or may not display the
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optimal properties calculated ahead of time by the in silico
methods using the iterative optimization procedure
described above.

After a cell has been identified or constructed to have a
potential to meet the desired performance, it is placed in
culture under a specified environment. The specified envi-
ronment is determined during the optimization procedure.
That is, the optimization procedure calculates properties of
the network under various environments, as described
above, and identifies the specified environment in which the
desired performance is achieved.

In one aspect of the methods described herein, a cell
culture is optimized to produce a desired growth rate and/or
biomass accumulation, or to produce a specific end-product
or products, such as a fatty acid, methanol or ethanol for
biofuel production, antibiotic, recombinant protein, sugar,
polymer, etc. At the inception of a culture, the methods and
computational processes described herein are used to deter-
mine optimal cultural parameters, such as optimal metabo-
lite concentration. For instance, glucose may be optimally
present in a certain concentration in the culture media in
order to optimize growth rates without, for example, harmful
accumulation of by-products. In another embodiment, an
amino acid may be added to the culture medium, or a culture
medium constituent may be limited in order to maximize
production of a protein, such as a recombinant protein (for
instance, too rapid production of a protein may be counter-
productive, resulting in cytoplasmic crowding by the over-
produced protein, preventing optimal metabolic activity of
the cell and/or optimal function of the cellular processes
involved in making the protein, such as limitation of induc-
ers or necessary transcription factors). Culture conditions,
such as glucose concentration, pO,, pH, etc., may be moni-
tored occasionally, at fixed time periods, or continuously,
and the data input either automatically or manually into a
computer program to determine if optimal conditions for the
desired outcome are present and, optionally, to determine
steps, such as the addition of sugars, CO,, O,, buffers,
chelating agents, water, new media, etc., necessary to bring
the culture to, or back to, optimal conditions. The computer
system may be configured (that is, comprises necessary
software, hardware and peripheral components), to auto-
matically bring the cell culture to optimal parameters by
automatically adding or removing materials from the cell
culture to optimize a desired outcome.

In one example, the cell culture is a continuous culture
and a computerized system is used to monitor culture
parameters, including, for example and without limitation,
temperature, sugar (or other carbon and/or nitrogen source)
concentration, pH, pO,, and/or any other relevant parameter
or indicator of culture status. The computerized system also
contains hardware and computer processes for controlling
flow of new culture media into the cell culture; flow of
culture media (containing biomass) out of the culture and the
addition of one or more culture constituents, such as a
carbon source, a nitrogen source, a buffer, O, or CO,, and/or
an amino acid(s) to the culture. A person of skill in the art
can readily configure and program such as system.

According to another non-limiting embodiment of the
methods described herein, in which a cell is required to
adapt to culture conditions, the cells are cultured for a
sufficient period of time and under conditions to allow the
cells to evolve to the desired performance. That is, adaptive
evolution of natural or engineered strains can be carried out
as guided by the general optimization methods or proce-
dures. Natural strains that have not experienced a particular
environment or genetically altered strains can be analyzed
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by the network reconstruction and optimization procedures
disclosed above. These strains can then be put under a
selection pressure consistent with the desired function of the
organisms and evolved towards the predetermined perfor-
mance characteristics. The cells may achieve the desired
performance without additional adaptive evolution. That is,
the sufficient period of time for culturing the cells, may be
immediately after the genetic makeup of the cells is con-
structed using the methods described herein without the
need for further adaptive evolution.

In other words, extended cultivation of a non-optimal or
non-evolved strain can be performed to optimize or evolve
the metabolic network toward the optimal solution that is
achievable under the defined environmental conditions. The
practice of this evolutionary process requires on the order of
weeks to years to optimize a metabolic network depending
on how far it is from the optimal conditions at the beginning
of the evolutionary process, and how difficult it is to achieve
the necessary changes through random mutation and shifts
in regulation of gene expression. This process can be accel-
erated by the use of chemical mutagens and/or radiation.
Additionally, the process can be accelerated by genetically
altering the living cell so that it contains the biochemical
reactants determined by the in silico method described
above, that achieve a desired performance.

Methods are known in the art for culturing cells under
specified environmental conditions. For example, if the cell
is E. coli, and the desired performance is a desired growth
rate, the procedure set out below can be used. This procedure
can be readily adapted for use with other bacterial cells
and/or other performance criteria. Additionally, the proce-
dures can be readily developed for use with other cell types
such as animal cells. For example, the methods can be
readily adapted for use with other culturing systems, such as
large scales systems in which cells adhere to a culturing
vessel. The culturing methods may be adapted for high-
throughput analysis, as known in the art.

If a strain needs to be directionally evolved to achieve the
desired performance, then following the construction of the
metabolic reaction network in the chosen host strain, the
cells are typically stored frozen at -80° C. with 30%
glycerol. For each adaptive evolutionary process, frozen
stocks can be plated on LB agar and grown overnight at 37°
C. From the plate, individual colonies can be identified that
arose from a single cell. An individual colony can be used
to inoculate a liquid culture, known as a pre-culture. Pre-
cultures inoculated from a single colony of the respective
strain are grown overnight in the defined medium for the
subsequent evolutionary process. A pre-culture sample is
taken the following day, typically at mid-log phase (in the
middle of logarithmic growth) of growth to inoculate the
culture conditions that define the environment that the
adaptive evolution is to take place. Batch bioreactors or
other suitable culture vessels are then initiated. This, typi-
cally would be done at 250 ml. volumes in micro-carrier
spinner flasks inside a temperature controlled incubator on
top of a magnetic stir plate, set at suitable, typically high,
speed to ensure sufficient aeration and at the optimal growth
temperature (37° C. for wild type E. coli) for any given
strain. Other frequently used cultivation procedures known
in the art can also be used.

After a suitable time period, typically the following day
for E. coli (before the culture reaches stationary phase), an
aliquot of the culture now in mid-log phase is serially
transferred to a new spinner flask containing fresh medium.
If the culture is being optimized for growth rate, stationary
phase must be avoided to ensure that the selection criterion
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is growth rate. Then serial transfers are performed at fixed
time intervals (typically every 24 hours depending on the
growth rate) at mid-log phase and the volume of the inocu-
lum into the new culture vessel can be adjusted accordingly
based on the increase in growth rate.

Growth rate is thus monitored frequently, typically on a
daily basis in order to determine the proper volume of the
inoculum to use for the next serial transfer. This serial
cultivation process is repeated sufficiently often to allow the
cells to evolve towards its optimal achievable growth under
the conditions specified through the medium composition.

The growth and metabolic behavior typically is monitored
during the adaptive evolutionary process to determine how
the population is evolving over time. At fixed time intervals,
typically every few days, the culture is tested for metabolic
and growth behavior, by measuring the oxygen uptake rate,
substrate uptake rate and the growth rate. The results are
then plotted as a data point on the phenotype phase plane.
Movement of the so-determined data point towards the line
of optimality would indicate evolution towards optimal
growth behavior. These measurements of the membrane
transport fluxes along with the growth rate are repeated until
the cells are observed to be operating their metabolic net-
work such that the data points lie at the optimal conditions.
The evolutionary process can then be continued until there
is no further increase in the optimal performance, e.g.,
growth rate. If no further change is observed, then maximal
growth rate has been achieved for the given conditions.

Byproduct secretion can be monitored by HPLC or other
suitable methods of analytical chemistry to assess changes in
metabolism that are implicated in the evolution towards
optimal growth behavior. For these studies it typically is
imperative to determine a correlation of dry weight vs
optical density for the evolved strain since this will be
different from the wild type. In addition to monitoring the
growth rate and steady state growth, the cultures are
inspected for any signs of possible contamination or co-
evolution with a mutant subpopulation. Aliquots for each
day of culture are kept refrigerated as a backup in the event
of any contamination, and the phenotype of the culture is
ascertained by plating samples of the culture and inspecting
for any differences in colony morphology or different
mutants. On a daily basis, the optical density of the culture,
time of inoculation, inoculum volume, growth rate, and any
signs of contamination, can be logged. Samples are also
frozen at —80° C. in 30% glycerol for each day of culture for
any possible further use.

According to a further embodiment, provided herein is a
computer-implemented method for achieving an optimal
function of a biochemical reaction network in cells in a cell
culture, including prokaryotic or eukaryotic cells, for
example and without limitation, bacterial, fungal (including
yeast), mammalian and cancer cells. The method comprises
(a) calculating in a computer one or more optimal cell
culture parameters in a cell culture using a flux balance
analysis constrained by a solvent capacity of cells in the cell
culture, wherein the optimal cell culture parameter is cal-
culated by determining an optimal property of a biochemical
reaction network comprising a list of biochemical reactions
by applying a computational optimization method to one or
more of the biochemical reactions of the biochemical reac-
tion network, the optimization method comprising (i) alter-
ing one or more elements of the one or more biochemical
reactions in the biochemical reaction network and re-com-
puting the optimal property, and (ii) repeating (i) until an
optimal function is reached; and (b) initiating or maintaining
the optimal cell culture parameter in the cell culture to
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achieve the optimal function of the biochemical reaction
network in the cells. According to one embodiment, the
optimization method further comprises calculating one or
more of a maximum metabolic rate, an optimal metabolite
concentration and an enzyme activity by applying a com-
putational optimization method to a kinetic model of a
metabolic pathway. In an example of an implementation of
the method, the method further comprises culturing a cell
under culture conditions that favor achievement of the
optimal function. Optionally, the method further comprises:
(c) constructing the genetic makeup of a cell to contain the
biochemical reactions (d) placing the cell constructed under
(c) in culture under a specified environment to obtain a
population of cells; and (e) cultivating the cells as in step (d)
for a sufficient period of time and under conditions to allow
the cells to evolve to the desired optimal function deter-
mined under (a), wherein the biochemical reaction network
comprises a comprehensive biochemical reaction network.
In one embodiment, the optimal function is maximizing
biomass production. In another, the optimal property is
maximal internal yield of ATP. hi a further embodiment, the
solvent capacity accounts for ribosome density in the cells in
the cell culture as a measure of ribosomal-, enzyme associ-
ated-, and non-metabolic proteins in the cells or accounts for
mitochondria as a subcellular compartment in the cells in the
cell culture. According to one embodiment, the method
comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system.

According to another embodiment, also provided is a
computer readable medium having stored thereon instruc-
tions which, when executed by a processor, cause the
processor to implement a process implementing a computer
model for achieving an optimal function of a biochemical
reaction network in cells in a cell culture. The process
comprises: (a) calculating one or more optimal cell culture
parameters in a cell culture using a flux balance analysis
constrained by a solvent capacity of cells in the cell culture,
wherein the optimal cell culture parameter is calculated by
determining an optimal property of a biochemical reaction
network comprising a list of biochemical reactions by apply-
ing a computational optimization method to one or more of
the biochemical reactions of the biochemical reaction net-
work, the optimization method comprising (i) altering one or
more elements of the one or more biochemical reactions in
the biochemical reaction network and re-computing the
optimal property, and (ii) repeating (i) until an optimal
function is reached; and (b) initiating or maintaining the
optimal cell culture parameter in the cell culture to achieve
the optimal function of the biochemical reaction network in
the cells. The computer-readable medium may include in its
various embodiments instructions which, when executed by
a processor, cause the processor to implement a process
implementing a computer model for achieving any method
described in this document, including, without limitation,
the following: a computer readable medium as described
above in which the optimization method further comprises
calculating one or more of a maximum metabolic rate, an
optimal metabolite concentration and an enzyme activity by
applying a computational optimization method to a kinetic
model of a metabolic pathway; a computer readable medium
as described above wherein the optimal function is maxi-
mizing biomass production; a computer readable medium as
described above in which the optimal property is maximal
internal yield of ATP; a computer readable medium as
described above in which the solvent capacity accounts for
ribosome density in the cells in the cell culture as a measure
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of ribosomal-, enzyme associated-, and non-metabolic-pro-
teins in the cells; a computer readable medium as described
above in which the solvent capacity accounts for mitochon-
dria as a subcellular compartment in the cells in the cell
culture; a computer readable medium as described above in
which the cells are human cells; a computer readable
medium as described above in which the cells are cancer
cells; and a computer readable medium as described above
that comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system.

According to further embodiments, a device is provided
that comprises the computer-readable medium described
according to any embodiment herein, and a processor for
executing the instructions on the computer-readable medium
for achieving an optimal function of a biochemical reaction
network in cells in a cell culture. As above, the instructions,
when executed by a processor, cause the processor to
implement a process implementing a computer model for
achieving an optimal function of a biochemical reaction
network in cells in a cell culture, comprising: (a) calculating
one or more optimal cell culture parameters in a cell culture
using a flux balance analysis constrained by a solvent
capacity of cells in the cell culture, wherein the optimal cell
culture parameter is calculated by determining an optimal
property of a biochemical reaction network comprising a list
of biochemical reactions by applying a computational opti-
mization method to one or more of the biochemical reactions
of the biochemical reaction network, the optimization
method comprising (i) altering one or more elements of the
one or more biochemical reactions in the biochemical reac-
tion network and re-computing the optimal property, and (ii)
repeating (i) until an optimal function is reached; and (b)
initiating or maintaining the optimal cell culture parameter
in the cell culture to achieve the optimal function of the
biochemical reaction network in the cells. As above, The
computer-readable medium may include in its various
embodiments instructions which, when executed by a pro-
cessor, cause the processor to implement a process imple-
menting a computer model for achieving any method
described in this document, including, without limitation,
the following: a computer readable medium as described
above in which the optimization method further comprises
calculating one or more of a maximum metabolic rate, an
optimal metabolite concentration and an enzyme activity by
applying a computational optimization method to a kinetic
model of a metabolic pathway; a computer readable medium
as described above wherein the optimal function is maxi-
mizing biomass production; a computer readable medium as
described above in which the optimal property is maximal
internal yield of ATP; a computer readable medium as
described above in which the solvent capacity accounts for
ribosome density in the cells in the cell culture as a measure
of ribosomal-, enzyme associated-, and non-metabolic-pro-
teins in the cells; a computer readable medium as described
above in which the solvent capacity accounts for mitochon-
dria as a subcellular compartment in the cells in the cell
culture; a computer readable medium as described above in
which the cells are human cells; a computer readable
medium as described above in which the cells are cancer
cells; and a computer readable medium as described above
that comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system. The device
also may comprise additional components for implementa-
tion of the instructions, including, without limitation one or
more sensors, such as pH, gas (e.g. O, or CO,), chemical or

10

15

20

25

30

35

40

45

50

55

60

65

26

temperature sensors, one or more culture vessels, one or
more heating elements or cooling elements, reservoirs for
storing storing cell culture medium, cell culturing ingredi-
ents or an analytical composition (e.g., a composition useful
in testing a cell culture parameter) and one or more mecha-
nisms for dispensing the storing cell culture medium, cell
culturing ingredients or an analytical composition into a cell
culture or other container, such as a cuvette, or for taking
and/or analyzing samples from one or more cell culture
vessels, including, mechanical, fluidic and robotic mecha-
nisms, a display (e.g., a monitor); one or more analytical
devices, such as a spectrophotometer for measuring cell
density and/or the results of an analytical assay; and one or
more communication subsystems for receiving or transmit-
ting data, including, without limitation wired communica-
tion devices, such as Ethernet, modem, FIREWIRE, Uni-
versal Serial Bus (USB), and THUNDERBOLT devices, or
wireless communication devices such as BLUETOOTH or
802.11g or n protocol devices. The computer-readable
medium may be located in a device comprising the proces-
sor or in communication with a device, such as with one or
more external storage media. As would be apparent to those
of ordinary skill one or more aspects of the integrated
system, such as reaction parameters, might be located
remotely and downloaded or otherwise integrated into the
system of implementing the methods described herein.

In one embodiment of the implementation of the methods
described herein, the methods and computer-readable media
are configured to be executable within a device which
comprises a processor and a computer-readable medium as
part of a computer subsystem of the device. As indicated
above, the device may comprise any of the innumerable
components for culturing cells, analyzing cells, and other-
wise processing cells, including, without limitation,
mechanical, fluidic, and robotic components useful for
implementing the methods described herein—as would be
readily apparent to one of ordinary skill in the art. The
processor executes instructions for implementing the
method, namely an in silico model as described herein. The
model comprises according to one non-limiting embodi-
ment, an intracellular space and an extracellular space. The
intracellular space comprises steric (volume, spatial or
molecular crowding) limitations attributable to cellular com-
ponents, including without limitation: organelles, cytoskel-
eton, and other intracellular structures within the subcellular
compartment, such as nucleus, mitochondria, microtubules,
microfilaments, intermediate filaments, and further com-
prises enzymes and enzyme structures such as ribosomes as
well as other constituents, including sugars, metabolites, and
nucleic acids. Components in the intracellular space have
one or more size (spatial constraint, e.g., volume) and/or
kinetic parameters associated with them, and the compo-
nents interact within the model according to those size
and/or kinetic parameters. The extracellular compartment
may include such influences as waste accumulation, tem-
perature, pH, extracellular compositions, such as sugars,
waste materials, buffers, cytokines, growth factors, extra-
cellular matrix and/or cell growth scaffold, cell wall, cell
culture vessel characteristics, etc., each of which can be
assigned a kinetic relationship with the modeled cells and
the constituents thereof.

The following examples are provided as non-limiting
examples of the invention described herein.

EXAMPLES

The following is a table of abbreviations used in this
example and throughout.
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List of abbreviations used herein

Substrates Abbreviations Genes  Encoded enzyme

Go6p GLUCOSE-6-PHOSPHATE ptsG Glucose:PEP phosphotransferase

F6P FRUCTOSE-6-PHOSPHATE pik Phosphofructokinase

FDP FRUCTOSE-1,6-DIPHOSPHATE  gapA Glyceraldehyde-3-phosphate

dehydrogenase

DHAP DIHYDROXY ACETONE tpiA Triosephosphate isomerase
PHOAPHATE

GAP HLYCERALDEHYDE pgk Phosphoglycerate kinase
PHOSPHATE

1,3-DPG  1,3-DIPHOSPHO GLYCERATE  pykA Pyruvate kinase

3-PG 3-PHOSPHOGLYCERATE SucA a-Ketoglutarate dehydrogenase

2-PG 2-PHOSPHOGLYCERATE fumA  Fumarase

PEP PHOSPHOENOL PYRUVATE mdh Malate dehydrogenase

PYR PYRUVATE pta Phosphotransacetylase

AC ACETATE ackA Acetate kinase

ACCOA  ACETYL COENZYME A gltA Citrate synthase

ACTP ACETYL PHOSPHATE zwf Glucose-6-phosphate dehydrogenase

OAA OXALOACETATE ppe PEP carboxylase

CIT CITRATE aceE Pyruvate dehydrogenase

ICIT ISOCITRATE eno Enolase

AKG ALPHA-KETOGLUTARATE pei Phosphoglucose isomerase

SUCCoA SUCCINYL COENZYME A fba Fructose-1,6-bisphosphate aldolase

sucC SUCCINATE

FUM FUMARATE

MAL MALATE

Example 1

Here we study the impact of the limited solvent capacity
on E. coli cell metabolism at different physiological growth
conditions. We demonstrate that this constraint is relevant
for fast growing cells, and predict the existence of a meta-
bolic switch between cells growing at low and high nutrient
abundance, respectively. We carry out flux measurements of
several reactions in the E. coli central metabolism, observing
a partial agreement with the model predictions. Moreover, to
uncover the regulatory mechanisms that control the changes
in flux rates, we perform gene expression and enzyme
activity measurements, finding that the switch is controlled
predominantly at the enzyme activity level implemented by
changes in the activity of a few key enzymes in the . coli
central metabolism. Finally, we discuss the potential rel-
evance of the limited solvent capacity constraint to experi-
mental observations in other organisms.

Estimation of Crowding Coefficients:

The E. coli intracellular density is C=0.34 g/ml. The
specific volume was estimated for several proteins using the
molar volumes and masses reported in Lee B, Proc Natl
Acad Sci USA 1983, 80:622-626, resulting in average 0f 0.73
ml/g and standard deviation of 0.02 ml/g. The enzymes’
turnover rates were obtained from the BRENDAdatabase
(Schomburg I, et al. Nucleic Acids Res 2002, 30:47-49) for
102 E. coli enzymes.

Metabolic Flux Predictions:

The Flux Balance analysis with Molecular Crowding is
implemented by solving the following optimization prob-
lem: maximize the biomass production rate subject to the
constraints: balance in the production and consumption of
each metabolite (flux balance), the maximum capacity con-
straint for the carbon source uptake rate and the solvent
capacity constraint (Eq. 3). After expressing the reaction’s
stoichiometric coefficients in units of mol/dry biomass, the
maximum growth rate corresponds to the biomass produc-
tion rate, where biomass production is an auxiliary reaction
containing as substrates the cellular components in their
relative concentrations and as product the cell’s biomass.
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The crowding coefficients were modeled as noise, assigning
them randomly selected values from a list of estimated
values for about 700 E. coli enzymes. The predictions for all
fluxes were calculated (not shown)

Following the same procedure as for glucose, we also
made predictions for the E. coli metabolic fluxes when
growing on glycerol, lactate and succinate. The increase of
the carbon source concentration in the growth medium was
modeled as an increase of the maximum capacity of the
corresponding carbon source uptake flux. For each maxi-
mum capacity we computed the fluxes that maximize the
biomass production rate, obtaining a prediction for the
optimal flux of all reactions and the optimal biomass pro-
duction rate. Because the biomass production rate equals the
growth rate, using these predictions we can analyze the
behavior of metabolic fluxes as a function of the growth rate.

Bacterial Strain and General Growth Conditions:

The E. coli K12 strain MG1655 (F~A~ ilvG rtb50 rphl)
was used throughout the work. In order to obtain biomass
samples for flux measurements, 20-ml of the overnight
grown culture (~8-10 h) of wild-type cells in LB-medium
was inoculated in 980-ml M9 minimal medium (Sigma)
containing 2 g/I. glucose, where 90% was natural glucose
and the remaining 10% was labeled glucose [1,2-°C,]
glucose (with >99% purity and 99% isotope enrichment for
each position, [Cambridge Isotope Laboratories, Andover,
Mass.]). Cells were grown in a continuous growth mode at
5 different dilution rates (0.1, 0.25,0.4,0.55,and 0.72 Lh™)
in a Labfors bioreactor (Infors, Switzerland). The growth of
the bacterial culture was regularly monitored at Ay, 1O
document steady state at all dilution rates. The dissolved
oxygen was set at 100% initial value, and sterile air was
continuously sparged into the medium. Growth parameters,
such as pO,, pH, temperature (37° C.) and agitation (~400
rpm) were continuously monitored using microprocessor
probes. The pH of the medium was constant around 7.0 and
was controlled with regular adjustments by automatic supply
of acid (10% H;PO,) and base (2N NaOH) using two
peristaltic pumps. For determining intracellular metabolic
enzyme activities and global transcriptome profiles, the
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bacterium was grown under similar conditions (except only
natural glucose was used as source of carbon) in three
separate experiments, and biomass samples were collected
at all five-dilution rates. Biomass samples for intracellular
enzyme activity, gene expression and flux determination
were harvested at the end of each major dilution rates
indicated by constant Ay, (optical densities) and pO,
concentrations in the growth medium.

Metabolic Enzyme Activity Assays:

30-ml samples for enzyme assays were collected for
various dilution rates at the end of each dilution rate. The
cell pellets for enzyme assays were harvested by centrifu-
gation at 4,000xg at 4° C. for 10 min. These cell pellets were
re-suspended and washed in 100 mM Tris-HC1 (pH 7.0)
sonication buffer containing 20 mM KCl, 5 mM MnSO,, 2
mM DTT and 0.1 mM EDTA. The cells were disrupted by
3 sonication cycles of 30 sec each in a sonicator (Fisher
Scientific) to recover maximum possible yield of enzyme.
The cell debris was removed by centrifugation and the
resulting cell extract (supernatant) was immediately used for
enzyme assays or stored at —20° C. All operations were
carried out on ice. The supernatant of this sample was used
to determine total protein concentration in enzyme samples
using standard Bradford’s assay (Biorad, Richmond, Calif.).
This sample was also used for estimation of quantitative
assay of endogenous enzymes. The method of continuous
spectrophotometric rate determination with time was fol-
lowed for measurement of activities of the enzymes of
metabolic pathways. All the enzyme assays were done at 30°
C. in a thermostatically controlled UV/Vis spectrophotom-
eter (Cary 500) with 1-cm light path. All components the
reaction mixture and respective substrates were pipetted out
in a quartz cuvette (Fisher Scientific) and blanks were
adjusted. Reactions were initiated by adding supernatant
from the sonicated enzyme samples to give a final volume of
1 ml. The millimolar extinction coefficients for NAD™,
NADH, NADP* and NADPH was 6.22 cm™" mM™" at 340
nm, and those of methyl viologen and benzyl viologen at
578 nm was 9.78 and 8.65 cm''mM™', respectively,
whereas the millimolar extinction coefficient value for
5-mercapto-2-nitrobenzoic acid at 412 nm was 13.6 cm™!
mM-". For all enzyme assays described below, we define 1
unit of enzyme as the amount of enzyme required to convert
1 umol of substrate into specific products per minute per
milligram of protein under defined conditions of pH and
temperature. Most enzyme assay protocols used were the
standard assay protocols from Sigma (St. Louis, Mo., USA),
expect few, which were obtained from the published litera-
ture (Peng, L. et al. Appl Microbiol Biotechnol 61, 163-78;
Van der Werf, M. 1., et al., Arch Microbiol 167, 332-342; and
Zhao, J., et al, (2004) Appl Microbiol Biotechnol 64,
91-98.).

The assay conditions for various enzymes were as follows
(the gene names are listed in parenthesis against the enzyme
name): Glucose:PEP phosphotransferase (pts): 0.1 M Tris-
HCI (pH 8.4), 10 mM MgCl,, 1 mM DTT, 1 mM NADP™,
10 mM D-glucose, 3 U glucose-6-phosphate dehydrogenase,
10 mM PEP. Phosphofructose kinase (ptkA): 50 mM imi-
dazol-HCI (pH 7.0), 0.05 mM ATP, 5 mM MgCl,, 1 mM
EDTA, 0.25 mM NADH, 0.25 mM fructose-6-phosphate
(F6P), 0.5 U aldolase, 0.5 U glyceraldehyde phosphate
dehydrogenase, 0.5 U triose phosphateisomerase. Fructose-
1,6-bisphosphate aldolase (fbaA): 0.05 M Tris-HCl (pH
7.5), 0.1 mM cysteine-HC], 0.1 M potassium acetate, 2 mM
FDP, 0.7 mM CoC12, 0.25 mM NADH, 20 U triose phos-
phate isomerase, 2 U glycerol-3-phophate dehydrogenase.
Glyceraldehyde-3-phosphate dehydrogenase (gapA): 0.1
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mM Tricine-HCI (pH 8.1), 5 mM potassium phosphate, 20
mM neutralized sodium arsenate, 2 mM FDP, 2 mM DTT, 1
mM NAD™, 1 U aldolase. Triosephosphate isomerase (tpiA):
300 mM triethanolamine buffer (pH 7.8), 0.2 mM NADH, 1
U glycerolphosphate dehydrogenase, 5 mM glyceraldehyde-
3-phosphate. Phosphoglycerate kinase (pgk): 0.1 M trietha-
nolamine buffer (pH 7.8), 1 mM EDTA, 2 mM
MgS0,.7H,0, 1 U glyceraldehyde-phosphate dehydroge-
nase, 1 mM ATP, 10 mM 3-phosphoglycerate. Pyruvate
kinase (pykA): 0.1 M Tris-HC1 (pH 7.5), 5 mM ADP, 1 mM
DTT, 10 mM KCI, 15 mM MgCl,, 0.5 mM phosphoenol
pyruvate, 0.25 mM NADH, 10 U lactate dehydrogenase.
a-Ketoglutarate dehydrogenase (sucA): 0.2 M phosphate
buffer (pH 7.2), 1 mM CoASH, 0.1 M cysteine-HCI (pH
7.2), 10 mM NAD* (pH 7.2), 3 mM oa-ketoglutarate.
Fumarase (fumA): (assay based on formation of fumarate at
240 nm) 0.1 M Tris-HCl buffer (pH 7.2), 50 mM L-malate.
Malate dehydrogenase (mdh): 2.5 ml 0.1 M Tris-HCI (pH
8.8), 0.1 ml 0.1 mM sodium malate, 0.1 ml 10 mM NAD*
and cell extract, and water to a final volume of 3 ml.
Phosphotransacetylase (pta): 0.1 M Tris-HCl (pH 7.8), 0.2
mM CoA, 30 mM NH,C], 1.0 mM DTT, 1.0 mM NAD*, 5.0
mM L-malate, 4 U citrate synthase, 20 U malate dehydro-
genase, 2.0 mM acetyl phosphate. Acetate kinase (ackA):
0.1 M Tris-HC1 (pH 7.4), 0.8 M potassium acetate, 0.2 M
KCl, 4 mM ATP, 4 mM MgCl,, 1.6 mM PEP, 0.4 mM
NADH, 4 U pyruvate kinase, 55 U lactate dehydrogenase;
Citrate synthase (gltA): 100 mM Tris-HCI (pH 8.0), 8 mM
Acetyl CoA, 10 mM sodium oxaloacetate, 10 mM 5,5'-
dithiobios-2-notrobenzoate; Glucose-6-phosphate dehydro-
genase (zwf): 100 mM Tris-HC1 (pH 7.5), 2.5 mM MnCl,,
2 mM glucose-6-phosphate, 1 mM DTT, 1 mM NADP*;
PEP carboxylase (ppc): 66 mM Tris-HCI (pH 9.0), 10 mM
MgCl,, 10 mM sodium bicarbonate, 0.15 mM NADH, 2 U
malate dehydrogenase, 5 mM phosphoenolpyruvate; Pyru-
vate dehydrogenase (aceE): 100 mM Tris-acetate (pH 7.8),
5 mM pyruvate, 0.1 mM CoA, 7 mM sodium arsenate, 2 mM
methyl viologen; Enolase (eno): 100 mM Triethalomine
buffer (pH 7.4), 5.6 mM phosphoglycerate, 0.35 mM
B-NADH, 75 mM MgSO,, 300 mM KCl, 1 mM ADP, 0.1 ml
solution of 15 mM Tris-HCI (pH 7.4) mixed with 0.2% BSA.
Phosphoglucose isomerase (pgi): 100 mM Tris-HCl (pH
7.8), 10 mM MgCl,, 0.5 mM NADP*, 10 U glucose-6-
phosphate dehydrogenase, 2 mM fructose-6-phosphate.
The following equation was used for calculating enzyme
activities for most of the enzyme (unless specified)

Units/ml of enzyme =

AA3407m / min (Test) — AA 340, / min (Blank)
E.C.xV,

XV, XDF

where, V : total volume (ml) of assay; DF: Dilution factor;
E.C.: millimolar extinction coefficient of NAD*, NADH,
NADP* or NADPH at 340 nm was 6.22 cm™-mM™!, and
those of methyl viologen and benzyl viologen at 578 nm was
9.78 and 8.65 cm™!-mM™!, respectively, whereas it was 13.6
cm™'mM~" for 5-mercapto-2-nitrobenzoic acid at 412 nm.
V,: Volume of enzyme

i i Units/ml enzyme
Units/mg protein= ——
mg protein/ml
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Supernatants of the samples were also used for determin-
ing total protein concentrations using standard Bradford’s
assay (BioRad).

Flux Measurements and Analyses:

For flux analysis, biomass (from —100 ml culture) and
supernatant samples were collected at all five dilution rates.
These samples were immediately flash frozen in liquid
nitrogen and stored at —80° C. until further analysis. Flux
rates were determined using a tracer-substrate based GC-MS
and NMR metabolome mapping platform. The analyses
included determining positional >C tracer enrichment in
multiple intermediary metabolites of glycolysis, glycogen
synthesis, tricarboxylic acid cycle and their intracellular
products from [1,2-'C,]-D-glucose, as described in detail
below. The retention times and mass-to-charge (m/z) ion
clusters of selected ions of bacterial and culture media
metabolites were determined using mass isotopomer analy-
sis (MIDA) (See, e.g., Lee W N, et al. Anal Biochem 1995,
226:100-112 and Lee W N et al., Dev Neurosci 1996,
18:469-477), and expressed as net fluxes by subtracting
reverse fluxes from forward tracer incorporation patterns via
reversible metabolic steps (Xu J, et al., Anal Biochem 2003,
315:238-246). Results were expressed as mmol/hr/g dry
biomass glucose. Each experiment was carried out using
triplicate cell cultures for each condition within each experi-
ment, and the experiments were repeated once. Mass spec-
troscopic analyses were carried out by three independent
automatic injections of 1 pl samples by the automatic
sampler and accepted only if the standard sample deviation
was less than 1% of the normalized peak intensity. Statistical
analysis was performed using the Student’s t-test for
unpaired samples. Two-tailed significance at the 99% con-
fidence interval (u+/-2.580), P<0.01 indicated significant
differences in glucose derived fluxes. For some reversible
reactions, we measured both forward and reverse fluxes and
calculated net fluxes towards product synthesis.

Glycogen Glucose and RNA Ribose Stable Isotope Stud-
ies:

RNA ribose and glycogen glucose were isolated by acid
hydrolysis of cellular RNA after Trizol purification of cell
extracts. Total RNA amounts were assessed by spectropho-
tometric determination, in triplicate cultures. Ribose and
glycogen glucose were derivatized to their aldonitrile acetate
form using hydroxylamine in pyridine with acetic anhydride
(Supelco, Bellefonte, Pa.) before mass spectral analyses. We
monitored the ion cluster around the m/z256 (carbons 1-5 of
ribose) (chemical ionization, CI) and m/z217 (carbons 3-5 of
ribose) and m/z242 (carbons 1-4 of ribose) (electron impact
ionization, EI) to determine molar enrichment and the posi-
tional distribution of **C in ribose. For glycogen glucose we
monitored m/z327-332 using CI. By convention, the base
mass of **C-compounds (with their deriviatization agents) is
given as m, as measured by mass spectrometry as described
elsewhere (Boros L G, et al., (2002) Drug Discov Today 7:
364-372). Ribose or glucose molecules labeled with a single
13C atom on the first carbon position (ml) recovered from
RNA or glycogen, respectively, were used to gauge the
ribose fraction produced by direct oxidation of glucose
through the G6PD pathway. Ribose molecules labeled with
13C on the first two carbon positions (m2) were used to
measure the fraction produced by transketolase. Doubly
labeled ribose molecules (m, and m,) on the fourth and fifth
carbon positions were used to measure molar fraction pro-
duced by triose phosphate isomerase and transketolase.

Lactate:

Lactate from the cell culture media (0.2 ml) was extracted
by ethylene chloride after acidification with HCl. Lactate
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was derivatized to its propylaminehepta-fluorobutyrate ester
form and the m/z328 (carbons 1-3 of lactate) (chemical
ionization, CI) was monitored for the detection of m,
(recycled lactate through the PC) and m, (lactate produced
by the Embden-Meyerhof-Parnas pathway) for the estima-
tion of pentose cycle activity. In this study we recorded the
m,/m, ratios in lactate produced and released by bacterial
cells in order to determine pentose cycle activity versus
anaerobic glycolysis.

Glutamate:

Glutamate label distribution from glucose is suitable for
determining glucose oxidation versus anabolic glucose use
within the TCA cycle, also known as anaplerotic flux. Tissue
culture medium was first treated with 6% perchloric acid and
the supernatant was passed through a 3 cm® Dowex-50 (H+)
column. Amino acids were eluted with 15 ml 2N ammonium
hydroxide. To further separate glutamate from glutamine,
the amino acid mixture was passed through a 3 cm®
Dowex-1 (acetate) column, and then collected with 15 ml
0.5 N acetic acid. The glutamate fraction from the culture
medium was converted to its trifluoroacetyl butyl ester
(TAB). Under EI conditions, ionization of TAB-glutamate
produces two fragments, m/z198 and m/z 152, correspond-
ing to C2-05 and C2-C4 of glutamate. Glutamate labeled on
the 4-5 carbon positions indicates pyruvate dehydrogenase
activity while glutamate labeled on the 2-3 carbon positions
indicates pyruvate carboxylase activity for the entry of
glucose carbons to the TCA cycle. TCA cycle anabolic
glucose utilization is calculated based on the m,/m, ratios of
glutamate.

Fatty Acids:

Palmitate, stearate, cholesterol and oleate were extracted
after saponification of cell pellets in 30% KOH and 100%
ethanol using petroleum ether. Fatty acids were converted to
their methylated derivative using 0.5N methanolic-HCL.
Palmitate, stearate and oleate were monitored at m/z270,
m/z 298 and m/z264, respectively, with the enrichment of
13C labeled acetyl units which reflect synthesis, elongation
and desaturation of the new lipid fraction as determined by
mass isotopomer distribution analysis (MIDA) of different
isotopomers.

Gas Chromatography/Mass Spectrometry (GC/MS):

Mass spectral data were obtained on the HP5973 mass
selective detector connected to an HP6890 gas chromato-
graph. The settings were as follows: GC inlet 250° C.,
transfer line 280° C., MS source 230° C., MS Quad 150° C.
An HP-5 capillary column (30 m length, 250 pm diameter,
0.25 um film thickness) was used for glucose, ribose and
lactate analyses.

13C, 'H and *'P Nuclear Magnetic Resonance studies of
intracellular metabolites: Nuclear Magnetic Resonance
(NMR) studies included acetate, alanine, betaine, cholines
creatine, glucose, glutamate, glutamine, total glutathion
(GSH), glycine, 3-hydroxybutyrate, myo-inositol, lactate,
phosphocreatine, pyruvate, valine, hosphocreatine, creatine,
ATP, ADP, AMP, NAD+, and total phosphomonoesters
(PME) and phosphodiesters (PDE) extracted by ice-cold
0.9% NaCl, 12% PCA and 8 M KOH. The procedure
included the transferring of 5 ml. medium into a 15-mL tube
(ice-bath), removing the rest of the medium thoroughly,
washing cells with 6 mL of ice-cold NaCl, adding 2 mL
ice-cold 12% PCA to the frozen cells or media and spinning
at 1300 g for 20 min at 4° C. After transferring the
supernatant into a new 50 ml tube and resuspending the
pellet in 2 mL ice-cold 12% PCA in the old 50 mL tube we
placed the tubes in an ultrasound ice bath for 5 min. We
collected the supernatants, and lyophilized them in a freeze-
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dry system overnight. After re-suspending *C, 'H and *'P
spectra were obtained on a 9T Brucker vertical bore instru-
ment for quantitative and *>C positional analyses.

Tricarboxylic Acid Cycle Analysis Using Trimethylsilyl
(TMS) Derivatives:

Frozen pellets (-80° C.; wet 0.5 g) were powderized and
extracted with 2:1 (volume) of chloroform-methanol using
Omni-TH homogenizer. The slurry was centrifuged at 670 g
for 20 min and the upper methanol-water phase was col-
lected and treated with 200 pl of methoxylamine-HCI to
protect keto and aldehyde groups. The lower chloroform
phase is vortexed for 5 min with 10 mL of methanol-water
3:2 by volume. After 20 min centrifugation the two upper
methanol-water phases were combined. The combined
methanol-water phase was adjusted to pH 8.0 and evapo-
rated under constant flow of Nitrogen gas in an exhaust fume
hood. The residue was reacted with 100 pl. of bis(trimeth-
ylsilyl) trifluoroacetamide with 10% trimethylchlorosilane
(Regisil) at 70° C. for 70 minutes to form the TMS and
MOX-TMS derivatives of TCA cycle metabolites. GC-MS
analyses were carried out on an Agilent 5975 mass spec-
trometer, equipped with a model 6890 gas chromatograph
and a Varian VF-5MS capillary column (60 m, 0.25 mm i.d.,
0.25 mm film thickness.

Flux Data Analysis and Statistical Methods:

Each experiment was carried out using triplicate cell
cultures for each condition within each experiment and
experiments were repeated once. Mass spectroscopic analy-
ses were carried out by three independent automatic injec-
tions of 1 pl samples by the automatic sampler and accepted
only if the standard sample deviation was less than 1% of the
normalized peak intensity. Statistical analysis was per-
formed using the Student’s t-test for unpaired samples.
Two-tailed significance at the 99% confidence interval (u+/-
2.580), p<0.01 indicated significant differences in glucose-
derived fluxes. For some reversible reactions, we measured
both forward and reverse fluxes and calculated net fluxes

RNA Preparation for Microarray Analysis:

At all five dilution rates, 10-20 ml of the cell culture was
collected, mixed with 10% (v/v) of ice cold stop-solution
(5% water-saturated phenol in absolute ethanol), and cell
pellets were obtained by centrifugation at 4,500xg for 5 min
at 4° C., followed by flash-freezing of pellets with liquid
nitrogen. Cell pellets were stored at —80° C. until further use.
RNA was isolated from the frozen cell pellets using Mas-
terpure RNA isolation kit (Epicentre Biotechnologies, Madi-
son, Wis.) and RNA samples were processed for transcrip-
tome analysis using . coli Affymetrix microarray chips, as
described previously (Beg Q K, et al., Proc Natl Acad Sci
US4 2007, 104:12663-1266.). Dchip method was used to
analyze all microarray data as described in detail below.

The culture samples for microarray analysis were col-
lected at all five dilution rates. Approximately, 10 ml of the
cell culture was obtained and rapidly mixed with Yio”
volume of the ice-cold stop-solution (5% water-saturated
phenol in absolute ethanol) to inhibit any further transcrip-
tional activity. The tubes were capped, and the sample and
stop solution were mixed by inversion. The cell pellets were
obtained by centrifugation at 4,500xg for 5 min at 4° C.,
were immediately flash frozen in liquid nitrogen, and were
stored at —80° C. until further use. RNA was isolated from
the frozen cell pellets using Epicenter’s Masterpure RNA
isolation kit (using manufacturer’s product manual). The
samples were also treated with DNAse for 1 hr at 37° C. to
remove any DNA contamination in the RNA samples. 10 pug
of'all RNA samples were processed for transcriptome analy-
sis using FE. coli Affymetrix microarray chips by the
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Microarray Resource Centre, Department of Genetics and
Genomics at Boston University School of Medicine as
described previously (Beg Q K, et al., Proc Natl Acad Sci
USA4 104: 12663-12668). The microarray data was normal-
ized using dChip (Li, C et al. Genome Biology 2001, 2:
research0032.1-0032.11). The detailed microarray data from
five dilution rates is extensive and is not shown.

STEM Clustering Analysis:

We used the Short Time-series Expression Miner (STEM)
(Ernst and Bar-Joseph, 2006) to identify significant patterns
in gene expression profiles in response to the increasing
dilution rates. The gene expression profiles were trans-
formed so that they represent the log ratio change in expres-
sion from the first sample. The STEM clustering method
identifies from a comprehensive library of distinct profiles
those with a statistically significant number of genes most
closely matching the shape of the profile. Significant profiles
are then grouped together such that all profiles in the same
group are similar within a threshold. The clusters of signifi-
cant profiles are then analyzed with a Gene Ontology (GO)
enrichment analysis. FIG. 7 shows the library of profiles
considered and the significant profiles at a 0.05 Bonferroni
corrected level in color. Significant profiles that were
grouped together are in the same color.

In FIGS. 8-12, we show genes from significant profiles
organized by their clustering group. We also show a GO
enrichment table for the set of genes assigned to each of the
clusters. The GO categories assigned to various clusters in
FIGS. 8-12 reveal important results with respect to the
changing gene expression profile at the five dilution rates.
We found that the expression profiles for most of the genes
in Cluster 1 (FIG. 8) are very similar to the expression
profiles for the genes related to the TCA cycle (FIG. 5). For
this cluster of genes we see that the GO categories cellular
biosynthetic and metabolic processes have significant p-val-
ues. In Cluster 2 (FIG. 9) we see that genes for other cellular
processes such as flagella, fimbrium development, cell adhe-
sion, and activities in the outer membrane-bound periplas-
mic are down-regulated at all dilution rates until 0.55 h™;
and the genes for most of these processes were up-regulated
at the highest measured dilution rate 0of 0.72 h™. Analysis of
Cluster 3 (FIG. 10) reveals that activities of most of the
genes responsible for part of cell membrane and porin
activities are up regulated at intermediate dilution rates of
0.4 h™* followed by a down regulation at 0.55 h™' and
up-regulation again at 0.72 h™". In Cluster 4 (FIG. 11) we see
that the genes responsible for synthesis and metabolism of
various kinds of polysaccharides, biopolymers and lipids,
and DNA-mediated transposition were always down-regu-
lated during the course of intermediate growth rates, except
at the highest growth rates (0.72 h™"), which means that E.
coli never had the requirement of synthesizing or metabo-
lizing polysaccharides at intermediate growth rates. Analysis
of Cluster 5 (FIG. 12) reveals that the genes responsible for
biosynthesis and metabolism of various amino acids, (such
as glutamine, histidine, arginine etc.), urea cycle, and
metabolism of various carboxylic acids are always up regu-
lated throughout the growth of the bacterium at all dilution
rates.

Querying Expression Data to Identify Specific Expression
Profiles:

To assess the quality of the microarray profiles and to
identify genes with expression patterns that are similar to
genes encoding enzymes of the central carbon metabolism,
we used TimeSearcher (Hochheiser, H., et al., Dynamic
Querying for Pattern Identification in Microarray and
Genomic Data. In Proceedings IEEE Multimedia Confer-
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ence and Expo 2003, (IEEE, Piscataway, N.J.), Vol. 3, pp.
111-453-111-456.) to identify genes having similar expres-
sion profiles to any of the 23 genes corresponding to the 18
enzymes of FIG. 4. TimeSearcher displays a set of genes
satisfying constraints imposed by visual query boxes. The
input is a set of known genes and a set of constraint boxes
around these genes, and the output is these genes plus all the
other genes that also satisfy the constraint boxes.

Querying Gene Expression of Operons in the Central
Carbon Metabolism:

We also examined the expression profile obtained at
five-dilution rates growth of . coli organized in the operons
in the central carbon metabolism. In addition to the genes
already listed in FIG. 5, we identified additional genes that
are organized in operons (eg. frdABCD, sdhABCD, ace-
ABK) for several more reactions in the central carbon
metabolism, for which we don’t have measured flux value.
Plots (not shown, indicated a good agreement in the expres-
sion pattern of genes from the same operon.

Results

Limited Solvent Capacity Constrains the Metabolic Rate
of Fast Growing E. Coli Cells

The cell’s cytoplasm is characterized by a high concen-
tration of macromolecules resulting in a limited solvent
capacity for the allocation of metabolic enzymes. See,
Equations 2-4 (Eq. 2-4) above.

To understand the relevance of the constraint (Eq. 4) at
physiological growth conditions we first estimate the crowd-
ing coefficients (where a,=Cv,/b,) using data from experi-
mental reports. The E. coli cytoplasmic density of macro-
molecules is C=0.34 g/ml (Zimmerman S B, et al. J Mo/ Biol
1991, 222:599-620), while the molar volumes of proteins are
proportional to their molar masses (Lee B, Proc Natl Acad
Sci USA 1983, 80:622-626). The coefficient of proportion-
ality represents the specific volume and it is about 0.73 ml/g.
This empirical law allows us to compute the molar volumes
of E. coli enzymes from their molar masses. As a first
approximation we estimate b,, the coefficient of proportion-
ality between reaction rate and enzyme concentration, from
the enzyme’s turnover numbers. Data obtained from the
BRENDA data base for about hundred E. coli enzymes
(Additional file 1) shows that the turnover numbers vary
over five orders of magnitude (FIG. 1a), from 1072 to 10” I/s.
Using these parameter estimates we compute the crowding
coeflicients a, for about a hundred E. coli enzymes (FIG. 15),
resulting in an average and standard deviation of 0.014 and
0.009 1/[mmol/g/h], respectively. Because of the large
enzyme turnover variations the crowding coefficients are
distributed over a wide range as well, from 107 to 10°
1/[mmol/g/h] (FIG. 1b).

FBAwWMC Predicts a Change of Effective Metabolic Effi-
ciency Objective:

Having estimated the crowding coefficients we next
evaluate the relevance of the solvent capacity constraint (Eq.
4) at physiological growth conditions. To this end we utilize
a FBA model of E. coli MG 1655 metabolic network that
takes into account this constraint referred to as “flux balance
analysis with molecular crowding” (FBAwMC). Under con-
ditions of aerobic growth in a glucose-limited medium,
FBAwWMC predicts a saturation of the glucose uptake rate
and the growth rate (FIG. 2a,b) with increasing the glucose
uptake capacity. The predicted maximum glucose uptake
rate (~15 mmol/g/h) and maximum growth rate (~0.7 h™* are
within the range of experimentally determined values (Fis-
cher E, et al., Anal Biochem 2004, 325:308-316), corrobo-
rating our previous report (Beg Q K, et al., Proc Natl Acad
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Sci USA 2007, 104:12663-12668) that the solvent capacity
constraint (Eq. 4) is relevant at physiological conditions.

Associated with the predicted saturation of E. coli meta-
bolic rates, FBAWMC predicts a metabolic switch charac-
terized by a change in the effective criteria of metabolic
efficiency. At low growth rates the ratio between the biomass
production rate and the glucose uptake rate is at a maximum
but decreases with increasing the growth rate. In contrast,
the ratio between the biomass production rate and the
average reaction rate increases with increasing the growth
rate, reaching a maximum at high growth rates. In agreement
with our expectations, at low growth rates nutrients are
scarce and the best strategy for a cell is to maximize the
biomass production rate per unit of limiting nutrient (in this
case, glucose) uptake rate. In contrast, at high growth rates
the nutrients are abundant, the predicted metabolic rate is
limited by the solvent capacity constraint (Eq. 4) and,
therefore, the maximum growth rate is achieved by maxi-
mizing the biomass production rate per average reaction rate
(FIG. 2c¢). The predicted change in metabolic efficiency
objective is accompanied by a redistribution of the meta-
bolic fluxes, including those of exchange fluxes. Indeed, a
characteristic example is the predicted excretion of acetate at
high growth rates (FIG. 2d) that is well-supported by experi-
mental observations (El-Mansi E M, et al., J Gen Microbiol
1989, 135:2875-2883; Reiling HE, et al., J Biotechnol 1985,
2:191-206; and Wolfe A I, Microbiol Mol Biol Rev 2005,
69:12-50)

FBAwWMC-Predicted Metabolic Fluxes are within the
Range of Experimental Values:

FBAwMC is also able to predict internal metabolic fluxes
as a function of the growth rate. A subset of the FBAWMC
derived flux predictions in the central carbon metabolism are
shown in FIG. 3. In most cases the FBAWMC predicted
fluxes are within the range of experimentally determined
values. This is a striking result given that this implementa-
tion of FBAwWMC does not contain any free parameters. The
only model parameters are the crowding coefficients, which
were determined above using independent experimental
results. We should also note that the observed wide vari-
ability around the average behavior. Further testing of our
predictions will be necessary upon availability of better
estimates for the crowding coefficients.

Limiting our analysis to the expected behavior, we
observe a slope change for several fluxes when reaching the
highest growth rates. The reactions of the glycolytic path-
way, the flux towards the pentose-phosphate pathway via the
reaction catalyzed by the gene product of zwf, and the
acetate pathway switch at high growth rates to a faster flux
increase with increasing the growth rate. The experimental
values corroborate this qualitative behavior, but the change
is bigger for the ptsG-catalyzed reaction and even qualita-
tively different for the pykA-catalyzed reaction, both being
part of the glycolytic pathway. A second noticeable effect is
the predicted saturation of the TCA cycle flux at high growth
rates. The experimentally measured values of the TCA cycle
flux exhibit, however, a stronger effect characterized by a
decreasing tendency at high growth rates (FIG. 3). Taken
together these results indicate that while for most reactions
the FBAWMC predictions are within the range of experi-
mental measurements, a method for a more accurate esti-
mate of the crowding coeflicients on a network scale will be
required to provide more precise predictions.

Identifying the Regulatory Mechanism(s) that Control the
Action of the Metabolic Switch:

To examine if the changes in growth conditions and the
corresponding adjustments in cellular metabolism can be
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traced by distinct molecular signatures we next measured the
in vitro activity of eighteen selected enzymes that catalyze
reactions in the central carbon metabolism of E. coli
MG1655, and correlate their changes with those observed
for the measured flux rates (FIG. 4). For several enzymes
there is a good correlation between the measured enzyme-
and flux activities (Pearson Correlation Coefficient, PCC,
close to- or larger than 0.8). For example, with an increasing
growth rate the enzyme activity of the ptsG and pfkA gene
products follow the same increasing tendency as the fluxes
of the corresponding metabolic reactions (PCC=0.79 and
0.85, respectively). The glycolytic flux is known to be
controlled by the activity of these two enzymes while other
reactions adjust their fluxes through changes in metabolite
concentrations. In contrast, we found no significant corre-
lation between the measured fluxes and enzyme activities of
the TCA reactions (PCC=0.64, 0.35, -0.03 and -0.28 for
enzymes associated with gitA, sucA. fumA and mdh, respec-
tively), implying that the TCA flux is controlled by the
activity of enzymes catalyzing reactions outside this path-
way. A possible candidate to exert this action is the acetate
pathway. Indeed, an increase of the flux on the acetate
pathway towards the production of acetate can balance both
the increase in the flux originating from the glycolytic
pathway through aceE and a decrease in the flux from
Acetyl-CoA to the TCA cycle. This hypothesis is supported
by the increase in the enzyme activity of phosphotransacety-
lase (pta) when the growth rate increases beyond 0.4 h™*
(PCC=0.98), which is exactly the growth rate threshold
where the switch is taking place.

In parallel with the enzyme activity measurements we
also prepared mRNA from samples obtained at all five
dilution rates and processed them for microarray analysis. In
contrast to the observed overall correlation between mea-
sured fluxes and in vitro enzyme activities we do not observe
a significant correlation between the measured metabolic
fluxes and the relative changes in mRNA levels of enzyme-
encoding genes (FIG. 5), implying that the switch and
corresponding enzymatic functions are not predominantly
controlled at the transcriptional level. Correspondingly, no
significant correlation between the in vitro enzyme activities
and the relative changes in mRNA levels of enzyme-encod-
ing genes can be seen (FIG. 5) Taken together these results
indicate that the metabolic switch is predominantly con-
trolled by an increase in the enzyme activities of the end
products of ptsG and pfkA controlling the glycolysis flux,
and pta controlling the acetate pathway flux, respectively.
Discussion

Developing a modeling framework that can describe and
predict in a quantitative manner the experimentally observed
behavior of an organism is a significant challenge for
systems biology. One prerequisite of this goal is to uncover
the physicochemical constraints exerting the main influ-
ences on cellular metabolism (Price N D, Reed J L, Palsson
B O: Genome-scale models of microbial cells: evaluating
the consequences of constraints. Nat Rev Microbiol 2004,
2:886-897). Our results here and in Beg Q K, et al. (Intra-
cellular crowding defines the mode and sequence of sub-
strate uptake by Escherichia coli and constrains its meta-
bolic activity. Proc Natl Acad Sci USA 2007, 104:12663-
12668) indicate that the limited solvent capacity represents
a physiologically relevant constraint for fast growing E. coli
cells. The incorporation of this constraint to the FBA mod-
eling framework leads to the FBAWMC model whose pre-
dictions indicate that the solvent capacity constraint results
in a maximum glucose uptake rate and growth rate that are
within the range of experimentally determined values. The

30

40

45

38

flux predictions for several reactions of the . coli metabo-
lism are within the range of our measurements, as well.

From the perspective of quantitative modeling using flux
balance approximations, the solvent capacity constraint
forces us to consider reaction kinetics via the crowding
coeflicients, at least for fast growing cells. At low metabolic
rates the solvent capacity constraint is less relevant and flux
balance alone is sufficient to obtain satisfactory predictions.
In contrast, at high metabolic rates a precise knowledge of
the crowding coefficients is required to obtain accurate
predictions. In the absence of kinetic information we can
still obtain a good approximation by sampling the crowding
coeflicients from a list of estimated values and then focus on
the resulting general trend.

More importantly, the solvent capacity constraint allows
the interpretation of the metabolic switch taking place
between slow and fast growing F. coli cells. A recent study
of FBA models with different objectives demonstrates that
under nutrient scarcity a FBA model with the maximization
of'the biomass yield objective achieve the highest predictive
accuracy, while maximizing the ATP or biomass yield per
average flux unit is the best objective for unlimited growth
on glucose under aerobic conditions (Schuetz R, et al., Mo/
Syst Biol 2007, 3:119). In contrast, by considering the
solvent capacity constraint we obtain the same results using
the maximization of biomass production rate objective alone
(FIG. 2¢). This is more consistent with the expectation that
cells achieving the fastest growth rates outgrow cells grow-
ing at a slower rate, but how the highest growth rate is
achieved is determined by both the availability of substrates
and internal metabolic constraints, such as the solvent
capacity. Furthermore, the well-known acetate excretion
(El-Mansi E M, et al., J Ger Microbiol 1989, 135:2875-
2883. Reiling H E, et al. J Biotechnol 1985, 2:191-206; and
Wolte A I, Microbiol Mol Biol Rev 2005, 69:12-50) is
explained by the solvent capacity constraint as well. We
should note, however, that this does not exclude the possi-
bility that under certain physiological conditions acetate
excretion may result from a limited availability of oxygen in
the culture medium (Varma A, et al., App! Environ Microbiol
1994, 60:3724-3731).

Example 2

Here, we develop a modified FBA model that incorporates
a solvent capacity constraint for the attainable enzyme
concentrations within the crowded cytoplasm. Using this
model, we predict the maximum growth rate of E. coli
MG1655 wild-type and mutant strains on single carbon
sources and for the dynamic patterns of substrate utilization
from a mixed-substrate growth medium. We test the model
predictions by using growth rate measurements and microar-
ray and substrate concentration temporal profiles, and we
obtain a good agreement between model predictions and
experimental measurements. Taken together, these results
suggest that macromolecular crowding indeed imposes a
physiologically relevant constraint on bacterial metabolic
activity and that incorporating this constraint allows for
improved modeling of cell metabolism from system-level
principles.

Mathematical Framework:

The flux balance analysis with molecular crowding
(FBAWMC) modeling framework is implemented by solving
the following optimization problem: maximize the growth
rate subject to the constraints described above. The maxi-
mum growth rate corresponds to the biomass production
rate, where biomass production is an auxiliary reaction
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containing as substrates the cellular components in their
relative concentrations and as product the cell’s biomass.

We model the crowding coefficients ai as noise. The
reported results were obtained by assigning a random value
to them from the gamma distribution

BB V! B
P(a):a(aa) exp(—wa)

where p>0 and <a> is the average crowding coefficient.
There is no particular reason for this choice other than by
changing § we can explore different scenarios. For instance,
for p=1 we obtain an exponential distribution, whereas for
[p>>1 we obtain a distribution that is almost concentrated
around a=<a>. The results reported in FIGS. 13-15 were
obtained by using p=3 and running the simulations 1,000
times to test the sensitivity of the results with respect to the
specific a, values. Similar results are obtained by using other
P(a) distributions.

The maximum growth rate p for each carbon source was
obtained assuming an unbound uptake rate for that carbon
source and zero for all other carbon sources. The average
crowding coeflicient <a> was fitted to obtain the minimum
square deviation between the measured and model predicted
growth rates, resulting <a>=0.0040+0.0005 h-g/mmol, in
which g is grams dry weight. However, the maximum
growth rates on glucose and glycerol are more consistent
with <a>=0.0031+0.0001 h-g/mmol and
<a>=0.0053+0.0001 h-g/mmol, respectively.

To model the temporal order of substrate uptake we
considered an initial concentration of 0.4 g/liter for glucose,
galactose, lactate, maltose, and glycerol, zero concentration
for acetate, and cell’s dry weight DW=0.00675 g. The
progression of the dry weight and the external substrate
concentrations were obtained from the integration of the
differential equations where m is restricted to external
metabolites, um is the molar mass of metabolite m, and V is
the working volume. The maximum growth rate p(t) and the
fluxes f(t) are obtained by solving the FBAWMC model for
the substrate concentration profile at time t. The value of <a>
is smaller if glucose alone is consumed and larger if glycerol
is consumed. Therefore, we solve three FBAWMC problems
corresponding to the consumption of glucose alone
(<a>=0.0031 h-g/mmol), consumption of all substrates
except glycerol (<a>=0.004 h-g/mmol), and consumption of
all substrates (<a>=0.0053 h-g/mmol), and selected the
condition resulting in the maximum growth rate.

Estimation of the Crowding Coefficients:

The crowding coefficients play a key role in our model.
Therefore, it is important to estimate their values from
experimental measurements. However, this is a challenging
task, as it requires knowledge of the kinetic parameters
associated with the E. coli enzymes, which are not available
in all cases. Yet we can obtain an estimate for the crowding
coeflicients by making use of the known turnover rate of
several E. coli enzymes. The crowding coefficients (units of
time X mass/mole) are defined by Eq. 5 (see above), where
C (units of mass/volume) is the density of the E. coli
cytoplasm, vi (units of volume/mole) is the molar volume of
enzyme i, and b, (units of 1/time) is the proportionality factor
between the flux [units of mole/(mass X time)], and the
enzyme concentration (units of mole/mass), i.e., f=b.E,. In
general bi is decomposed into

b;=xk,

i ViV

71

10

25

40

45

50

65

40

where k; (units of 1/time) is the enzyme turnover number,
and 0=x,<1 (no units) is determined by the concentration of
substrates, products, and activators/inhibitors associated
with the ith reaction. For example, if reaction i is a single
substrate irreversible reaction and it is characterized by
Michaelis-Menten kinetics, then

N (3]

Xi= >
S+K;

where S is the substrate concentration and K, is the Michae-
lis-Menten or half-saturation constant. Thus, xi~0 at small
substrate concentrations (S<<K,), whereas at saturation
(S>>K,) x;~1. Substituting Eq. 7 into Eq. 6 and assuming
that enzymes are working near saturation (x,~1), we obtain

]

where the symbol ~indicates that this is an estimate and
some variation is expected for enzymes that are not working
at saturation. The magnitudes on the right-hand side can be
estimated by using different sources of experimental data.
The E. coli cytoplasmatic concentration is C=0.34 g/ml).
The enzymes’ molar volumes can be estimated from the
equation v,"*=Mv,Pe<¥*)_110], where M, is the molar
mass of enzyme i (units of mass/mole) and v,“7*<%<) ig its
specific volume (units of volume/mass). We estimate the
specific volume from measurements of this magnitude for
globular proteins. These data indicate that the specific vol-
ume has small variations among enzymes relative to the
molar mass variations. Therefore, we take the same specific
volume for all enzymes and equal to the reported average
specific volume for the proteins, resulting in v,?**¥~0.73
ml/g. Finally, we consider the molar mass and the turnover
number of several E. coli enzymes reported in BRENDA.
Using these data and Egs. 9 and 10, we computed a, for
several E. coli enzymes, resulting in the distribution shown
in FIG. 17.

Growth Experiments, Carbon Substrate, and Microarray
Analyses:

The E. coli K12 strain MG1655 (F~ A7 ilvG rfb50 rphl)
was used throughout the work. Isogenic E. coli mutants
(pgk, atpC, gpmA, nuoA, gdhA, and pfkA) were obtained
from F. Blattner (University of Wisconsin, Madison, Kang
Y, et al., (2004) J Bacteriol 186:4921-4930.). The experi-
mental details of the growth rate measurements, substrate
concentration assays and microarray analyses are detailed
below.

Bacterial Strains and Growth Conditions:

The E. coli K12 strain MG1655 (F-A-ilvG rfb50 rphl)
was used throughout the work. Isogenic E. coli mutants
(pgk, atpC, gpmA, nuoA, gdhA, and pfkA) were obtained
from F. Blattner (University of Wisconsin, Madison).
Chemicals and reagents used in the growth experiments
were from Sigma (St. Louis, Mo.) or Fisher Scientific
(Pittsburgh, Pa.). The growth experiments using M9 mini-
mal medium containing mixture of five carbon sources
(glucose, maltose, galactose, L-lactate, and glycerol) were
carried out in a 2-liter Labfors bioreactor with 1.2-liter
working volume (Infors, Switzerland). All the carbon
sources (used in equal ratios) were filter sterilized and added
to the growth medium at a final concentration equivalent to
0.2% sugar. For these growth experiments, the dissolved
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oxygen was set at 100% initial value, and sterile air was
continuously sparged into the medium. Growth parameters,
such as pH, pO,, temperature, and agitation were continu-
ously monitored through microprocessor probes. Samples
were collected at 30-min intervals to document various
growth phases and extracellular substrate concentrations and
to assess the transcriptome state. For assessing the expo-
nential-phase transcriptome states in individual carbon-lim-
ited (glucose, galactose, maltose, glycerol, lactate, or
acetate) M9 minimal medium, the carbon source concentra-
tion in the M9 minimal medium was adjusted to the number
of carbon atoms equivalent to that present in 0.2% glucose.
Fifty microliters of the overnight inoculum of E. coli MG
1655 (prepared in the same medium used for the experi-
ment) was inoculated in 50 ml of growth medium in a
250-ml Erlenmeyer flask supplemented with the appropriate
carbon source. The growth profile of OD600 was docu-
mented at regular intervals.

Experimental Determination of Maximum Growth Rates:

When determining maximum growth rates in different
carbon sources, we used a 12- to 15-h-old E. coli culture
(prepared in the same substrate to be used for the final
medium) to inoculate a Sixfors bioreactor (Infors, Switzer-
land) containing M9 minimal medium (400 ml working
volume) supplemented with various carbon sources, and
monitored the growth profile at regular intervals by optical
density at 600 nm. A method of continuous cultivation of
bacterial cells with smooth changes in growth rate was used
for determining the maximum growth rate in various sub-
strates. This method has been shown to be more precise to
determine growth rate in £. coli than batch culture (Paalme
T, et al. (1997) Antonie Van Leeuwenhoek 71:217-230 and
Paalme T, et al.,, (1995) J Microbiol Methods 24:145-153).
When the cells reached stationary phase (also indicated by
constant OD and sudden increase in dissolved oxygen
value), the flow of fresh growth medium was started at a
dilution rate slightly below their maximum growth rate
calculated from their growth profile in the exponential
phase. The cells were allowed to grow at this dilution rate
until they reached a steady state. Once the cells were found
to be growing well in the steady state, the washout of cells
was started at a dilution rate that was above their maximum
growth rate. The washout was done for the next 6 h, and the
0Dy, data obtained (OD readings were converted into log)
during the washout period were used to calculate the maxi-
mum growth rate for all the cultures.

In; —Iny 11
Growthrate:D—(%] (1]

where D is the dilution rate during washout of cells, Inf'is the
natural log of the final ODy,, and Ini is the natural log of
an ODgy, 3 h before the final ODg,.

Substrate Concentration Assays:

For determining the residual concentration of individual
carbon sources in the growth medium, samples of cell
culture were centrifuged for 2 min at 13,000 g at 4° C. The
supernatant was filtered through a 0.22-um filter and stored
at —80° C. until further use. Concentrations of D-galactose,
D-glucose, glycerol, L-lactate, maltose, and acetate in the
cell-free supernatant were determined by using correspond-
ing Enzymatic BioAnalysis kits (R-Biopharm, South Mar-
shall, Mich.) according to the manufacturers’ instructions.
Before analysis, all the samples were placed in a water-bath
at 80° C. to stop any background enzymatic activity. For
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maltose analysis, the samples were treated with glucose
oxidase and hydrogen peroxide and passing air current for 1
hr to remove residual glucose (which might impair the
precision of the maltose assay) as per the manufacturer’s
instructions.

Microarray Sample Collection:

For the shake-flask exponential-phase experiments using
individual carbon sources, at ODg,,=~0.2, the whole cell
culture volume (50 ml) was mixed with 5 ml of ice-cold
stop-solution (5% water-saturated phenol in absolute etha-
nol), and a cell pellet was obtained by centrifugation at 4,500
g for 5 min at 4° C., followed by flash freezing of pellets
with liquid nitrogen. The pellets were stored at —80° C. until
further use. For the time series experiments using a mixture
of five carbon sources in M9 minimal medium, culture
samples for microarray analysis were collected at 30-min
interval between 2 and 8 h of growth. Approximately 5-50
ml of the cell culture (depending on the stage the cells were
growing) was obtained and rapidly mixed with Y1oth vol of
the ice-cold stop-solution (5% water-saturated phenol in
absolute ethanol) to inhibit any further transcription. The
tubes were capped, and the sample and stop-solution were
mixed by inversion. The cell pellets were obtained by
centrifugation at 4,500 g for 5 min at 4° C., immediately
flash frozen in liquid nitrogen, and stored at —80° C. until
further use. RNA was isolated from the frozen cell pellets by
using Epicenter’s Masterpure RNA isolation kit (using the
manufacturer’s product manual). The samples were also
treated with DNase for 1 h at 37° C. to remove DNA
contamination in the RNA samples. Ten micrograms of all
RNA samples was processed for transcriptome analysis
using F. coli Affymetrix microarray chips by the Microarray
Resource Centre, Department of Genetics and Genomics at
Boston University School of Medicine (www.gg.bu.edu/
microarray/index.htm).

Microarray Analysis of Samples from Individual Carbon
Source-Limited Media (Glucose, Maltose, Galactose, Glyc-
erol, Lactate, and Acetate):

The Dataset for this analysis is not shown as it is too large.
Details are summarized herein. To perform the data analy-
ses, we first identified genes for which there is no evidence
of sequence-specific hybridization intensity in any of the
five samples. If there was no sequence-specific hybridiza-
tion, that gene was not analyzed any further. We searched for
genes that vary between the five arrays much more than
genes with similar hybridization intensity. The idea here is
that the observed difference for a gene that varies much more
than its neighbors is probably not due to technical noise and
thus the variability could be due to underlying biological
differences between the samples. The ratio of the variability
of'a particular gene to the average variability of its 50 closest
neighbors was determined. When analyzing these data, we
chose an arbitrary threshold of 2.5 for this variability ratio
and identified the top 150 genes that had a ratio larger than
2.5 (i.e., the 150 genes that are probably the most dramati-
cally affected by the given growth conditions).

Examination of the top 150 genes reveals that glucose-,
maltose-, and galactose-limited growth results in the condi-
tion-specific up-regulation of genes involved with the trans-
port and catalysis of the specific carbon source (e.g., of those
of the maltose regulon in the maltose-limited growth con-
dition), whereas glycerol and acetate display similarities in
the expression program, but the “acetate signature” is stron-
ger and more expanded compared to glycerol’s. This obser-
vation suggests the appearance and subsequent expansion of
a foraging program as the quality of the carbon source
decreases, as previously suggested (Liu M, et al. (2005) J
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Biol Chem 280:15921-15927). As the mid-logphase growth
experiment using lactate as sole carbon source was done
separately then other five carbon source experiments, we
compared the expression of the genes expressed under
lactate-limiting conditions with those of glucose on a dif-
ferent Affymetrix chip (dataset not shown). Those genes that
failed to exhibit sequence-specific hybridization signal in
either sample were removed from consideration. As random
variability due to system noise is generally inversely related
to hybridization intensity, we compared the relative differ-
ence between the glucose and lactate samples for each gene
to the average difference between the two samples for genes
with similar hybridization intensity. The idea is that if a gene
is in a hybridization intensity neighborhood of noisy signals,
the observed difference between the two samples is less
likely to be due to a biological cause than if other genes with
similar hybridization intensity show little change. This idea
was reduced to a number. Genes with a “surplus variability”
were identified. Other genes were identified that were more
likely to be differentially expressed than those genes with a
surplus variability <4. Finally, we calculated the log 2-fold
change between the lactate and glucose samples and iden-
tified those that are more than 2-fold higher in the lactate
sample and in the glucose (GLC) sample. To have all the
information after using two different microarray platforms,
we scaled the raw values from the second glucose experi-
ment so that the total sum of raw intensities of common
genes would be the same as the first. The two glucose
experiments were then averaged together. Then we scaled
the lactate array by the same factor as used to make the two
glucose sums the same. Then for each gene and condition we
took the log 2 of the intensity value over the geometric mean
of the intensity values across all six experiments. The
glucose data in the correlation matrix shown in the bottom
panel of FIG. 16 are the average of the two glucose values
from the datasets after this normalization.

Microarray Analysis of Samples from Time Series Mixed-
Substrate Experiment:

To analyze the dataset, first we removed those expression
measurements that were not sequence-specific in any of the
samples in the dataset. This filter removes expression mea-
surements for genes that are probably not expressed under
the growth conditions. Then we calculated the fold change
for each time point relative to the geometric mean of the
hybridization intensity of all time points for each gene. Then
we organized the expression measurements from top to
bottom so that genes that show similar changes between the
samples are near each other. The Principal Component
Analysis (Peterson LE (2003) Comput Methods Programs
Biomed 70:107-119.) (FIG. 18), which globally assesses the
similarity of transcriptome profiles to each other by consid-
ering all the genes on the array, displays that there are similar
expression profiles in all samples collected between 2 and
3.5 h (exclusive glucose utilization phase). This was fol-
lowed by transition in the transcriptome state at the begin-
ning of the mixed-utilization phase between 4 and 4.5 h. The
5- to 5.5-h (mixed substrate utilization phase) and 6.5-h
samples (late carbon utilization phase) display similar global
expression profiles, interrupted by a significant alteration in
the expression profile at 6 h (which is indicating the switch
from acetate secretion to acetate utilization).

Querying Expression Data to Identify Specific Expression
Profiles:

TimeSearcher was used to identify genes having expres-
sion profiles similar to those of genes that are known to
participate in specific uptake pathways. TimeSearcher dis-
plays a set of genes satisfying constraints imposed by visual

10

15

20

25

30

35

40

45

50

55

60

65

44

query boxes. The input is a set of known genes and a set of
constraint boxes around these genes, and the output is these
genes plus all the other genes that also satisfy the constraint
boxes. Genes with similar expression pattern identified for
each profile were identified. These individual figures for
glucose, lactate, maltose, galactose, glycerol, and acetate
uptake clearly showed that several other genes that do not
directly take part in substrate uptake of these individual
carbon sources are also up-regulated along with the substrate
uptake genes. Many of these genes take part in the inter-
mediate steps of metabolism after substrate uptake.

Hierarchical Clustering of Time-Series Gene Expression
Data:

To further study the clusters determined by TimeSearcher
we performed hierarchical clustering with optimal leaf
ordering (Bar-Joseph Z, et al. (2001) Bioinformatics 17:S22-
S29 and Eisen M B, et al. (1998) Proc Natl Acad Sci USA
95:14863-14868). Next, we examined the enrichment of
different clusters for different Gene Ontology (GO) category
annotations by using the hypergeometric distribution to
compute P values. Corrected P values for multiple hypoth-
esis testing were computed by using a randomization pro-
cedure. We observed three major expression clusters,
denoted as A, B, and C (see FIG. 16). The details of GO
analysis of genes in each cluster about these expression
clusters were identified.

Probabilistic Clustering of Time-Series Data:

While hierarchical clustering is useful for visualizing and
analyzing complete datasets, it is less appropriate for study-
ing specific clusters because it is a greedy method that is
sensitive to noise. To complement the hierarchical clustering
results we have used a Hidden Markov Model (HMM) to
cluster the data (Ernst J, Vainas O, et al. (2007) Mol Syst Biol
3:74). Unlike in that reference, static transcription factor-
gene association data were not used as part of the clustering
model. The HMM model was restricted such that each state
of the model was associated with one time point, and every
state had a transition to at least one state in the next time
point and no more than three states. Output distributions of
each state were associated with a Gaussian distribution.
Genes were grouped into clusters such that each gene in the
same cluster had the same most probable path through the
HMM model. A total of 16 clusters were identified.

Stress Response:

We also examined the expression profiles of stress-re-
sponse genes during stationary phase, when the stationary
phase a factor RpoS controls the cellular physiology and
complex gene regulatory network. In addition to the up-
regulation of genes responsible for glycerol and acetate
uptake (FIG. 15), several other known genes for the stress
response were also up-regulated. For this we selected several
genes which are shown to be up-regulated during stationary-
phase stress response, and compared their expression pro-
files in our microarray data. Our results (FIG. 19) on
mixed-substrate microarray analysis also showed that sev-
eral known genes during various stationary-phase stress
responses (osmotic stress, periplasmic shock, genes that help
cell for long-term survival, universal stress) also show a high
expression pattern after the cell reaches stationary phase; the
expression pattern of these genes come down between 6 and
6.5 h and then go up again after 6.5 h. Thus, it can be
concluded that E. coli cells display a dual stress response, a
mild response prior to switching to the utilization of glycerol
and acetate and a major one at the complete exhaustion of all
substrates.

Biological functions of various genes shown in FIG.
19—rpoS: RNA polymerase, oS (038) factor; synthesis of
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many growth phase related proteins. Upon entry into sta-
tionary phase, the major adjustments in cellular physiology
are controlled by complex regulatory network involving
stationary-phase a factor RpoS.

The following genes are involved in survival of osmotic
stress: otsA and otsB: trehalose-6-phosphate synthase and
trehalose-6-phosphate phophatase; respectively; treC: treha-
lose-6-phosphate hydrolase; treB: PTS system enzyme II,
trehalose specific; treA: trehalase, periplasmic; osmY:
hyperosmotically inducible periplasmic protein; osmC:
osmotically inducible protein; osmB: osmotically inducible
lipoprotein; osmE: osmotically inducible protein. The fol-
lowing genes help cells for long-term survival: bolA: pos-
sible regulator of murein genes; dps: global regulator, star-
vation conditions; cbpA: curved DNA-binding protein;
functions closely related to Dnal; glgS: glycogen biosyn-
thesis, rpoS dependent. Other genes induced during various
stress responses: cspD: stress-induced DNA replication
inhibitor; rpoE: RNA polymerase, oF factor; heat shock and
oxidative stress; rseA: oF factor, negative regulatory protein
(induced during periplasmic shock); csrA: carbon storage
regulator; controls glycogen synthesis, gluconeogenesis, cell
size; and surface properties; wrbA: flavoprotein WrbA (Trp
repressor binding protein); uspA: universal stress protein.
Results

FBA with Molecular Crowding Predicts the Relative
Maximum Growth of E. coli Growing on Single Carbon
Sources:

FBAwWMC is described above. To examine the validity of
macromolecular crowding as a constraint on a cell’s meta-
bolic activity, and to test the predictive capability of the
FBAWMC framework, we first examined the phenotypic
consequences of extracellular substrate availability during
growth in single carbon-limited medium with oxygen being
in abundance, focusing on the maximum growth rate. The
FBAwWMC contains as a free parameter the average crowding
coeflicient <a>, and the model predictions for the maximum
growth rate are proportional to <a>. We first assumed that
<a> is a constant independent of the substrates. In this case
it is possible to make predictions for the maximum growth
rate in different substrates in arbitrary units. To obtain the
maximum growth rates in specific units we fit <a> to
minimize the mean-square deviation between the predicted
and measured growth rates, resulting in <a>=0.0040+0.0005
h-g/mmol, in which g is grams of dry weight. We have
obtained an independent estimate of a, for =100 E. coli
enzymes as well, resulting in values between 107° and 107!
and most probable values between 10> and 10~ (in units of
h-g/mmol). The obtained <a> is, therefore, within the
expected range.

Using the reconstructed E. coli MG1655 metabolic net-
work, we first tested the maximal growth rate of E. coli
MG1655 cells in various single carbon-limited media and
compared the results with the theoretically predicted growth
rates (FIG. 13a). In most cases the line of perfect agreement
falls within the standard deviation, implying an overall good
agreement between the model predictions and the measured
maximum growth rates. For glucose and glycerol, the line of
perfect agreement is outside the standard deviation, indicat-
ing that our assumption of a substrate-independent <a> is
not valid for these two substrates. E. coli is better adapted to
growth on glucose, suggesting a smaller average crowding
coeflicient than in any of the other carbon sources. Indeed,
the average crowding coeflicient necessary to obtain a
perfect  agreement for  glucose is smaller:
<a>=0.0031+0.0001 h-g/mmol. In contrast, in some carbon-
limited media E. coli reaches its predicted maximal growth
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rate only after a period of adaptive evolution (Fong S S, et
al., (2004) Nat Genet 36:1056-1058; Ibarra R U, et al.,
(2002) Nature 420:186-189), suggesting a higher average
crowding coefficient before metabolic adaptation. Indeed,
the average crowding coeflicient necessary to obtain a
perfect agreement for glycerol is larger:
<a>=0.0053+0.0001 h-g/mmol.

The FBAWMC framework also allows us to predict the
maximal growth rate of microbial strains with deleted meta-
bolic enzymes, by simply removing the corresponding meta-
bolic reaction from the FBAWMC model and recomputing
the maximal growth rate. To test the power of this predictive
capability we experimentally determined the maximal
growth rate of several E. coli M(G1655 single gene deletion
mutants grown in glucose-limited medium. As shown in
FIG. 134, the agreement between predicted and measured
maximal growth rates is remarkably good for various E. coli
mutants, providing further evidence for the validity of our
approach. It is worth noting that, as with FBA alone, this
analysis is not limited to single-enzyme mutants, but can be
carried out for any combination of two or more enzyme
deletions as well.

Substrate Hierarchy Utilization by £. coli Cells Growing
in Mixed Substrates

Extensive experimental data indicate that when grown in
complex media bacterial cells use the available substrates
either preferentially or simultaneously depending on the
growth conditions. To further assess the role of an enzyme
concentration limit on cellular metabolism we next exam-
ined the substrate utilization of E. coli cells in a mixed
carbon-limited medium, and we compared the results to the
FBAWMC FE. coli model-predicted substrate uptake and
utilization (FIG. 14). We grew E. coli MG1655 for 12 h in
a batch culture containing an equal concentration (0.04%
each) of five different carbon sources (galactose, glucose,
maltose, glycerol, and lactate) (FIG. 14a). These substrates
are taken up by E. coli through substrate-specific transport
mechanisms and enter the central carbon metabolism
through various substrate intermediates (FIG. 15 metabolic
pathways). Note, that in single carbon-limited medium,
maximum growth rates of E. coli in glucose (0.74 h™) was
higher; whereas the experimentally measured maximal
growth rates in glycerol (0.41 h™') and lactate (0.38 h™')
were lower than the model predictions (FIG. 13a). In
contrast, the maximal growth rates obtained on maltose
(0.61 h™) and galactose (0.51 h™') were in good agreement
with the FBAWMC-predicted values (FIG. 13a).

As typically seen in batch culture, initially E. coli cells
showed minimal growth (lag phase) followed by rapid
population expansion between 2 and 8 h (exponential
growth phase) with no further growth afterward (stationary
phase) (FIG. 14a). Parallel with this, the growth rate rapidly
increased with the start of the logarithmic growth phase,
reaching its maximum between 3 and 3.5 h. Thereafter the
growth rate steadily declined, becoming negligible to zero
after 8 h (FIG. 14a).

Of the five supplied carbon sources, in the first 3.5 h of
growth only glucose was used (phase 1); it was depleted
from the medium within the first 4 h (FIG. 14a). This
“exclusive glucose use” phase coincided with the initial
explosive growth and the maximal attained growth rate of
the culture (FIG. 14a). At 3.5-4 h E. coli cells started to use
all four remaining carbon sources, albeit at different rates.
Galactose, lactate, and maltose were preferentially used
during the next 2 h (phase 2), all three of them being
depleted from the growth medium by the sixth hour (FIG.
145). During this “mixed carbon utilization” phase lactate
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was used up at the fastest rate, followed by maltose and
galactose. A small amount of glycerol was also taken up
during this time interval, but its predominant utilization
occurred only after 6 h, and it was completely depleted from
the medium by 7.5 h (FIG. 14b). The concentration of
acetate, a well known byproduct of rapid E. coli aerobic
growth, increased steadily, reaching its peak concentration
in the growth medium at 6 h of growth. Thereafter, the
process was reversed, and acetate, along with glycerol, was
rapidly consumed and was depleted from the medium by 8
h (FIG. 14b), denoting a “late carbon utilization” phase in
the culture (phase 3). Of note, as single carbon source,
acetate provides a lower maximal growth rate (0.24 h™')
than any of the five supplied carbon sources (FIG. 13a).
Taken together, the sequential order of carbon substrates’
uptake in the batch culture experiment only partially corre-
lates with the maximal growth rate they individually pro-
vide: it appears earlier for lactate and later for maltose and
glycerol.

Subsequently, we tested FBAWMC E. coli model on the
mixed-substrate conditions. In contrast with FBA, which
predicts the simultaneous utilization of all carbon sources,
we find a remarkably good correlation between the mode
and sequence of FBAwMC-predicted and measured sub-
strate uptake and consumption (FIGS. 145 and 14c¢). There
are, however, two notable differences. First the FBAWMC
predicts a lesser excretion of acetate. In turn the substrates
are consumed faster in vivo (FIG. 144) because a larger
fraction of the carbon source is diverted toward the excretion
of'acetate. As a consequence the different phases of substrate
consumption are shifted to the right (longer times) for the
model predictions. The second major discrepancy is the
delayed consumption of galactose in the model predictions
(FIG. 14c¢). Yet, overall FBAWMC correctly predicts the
existence of the three experimentally observed phases of
substrate consumption: initial consumption of glucose, inter-
mediate mixed-substrate consumption, and late consump-
tion of glycerol and acetate.

As surrogate markers of cellular metabolism, during the
batch culture experiments we also traced the changes in pH
and oxygen concentrations in the growth medium. We
observed a steady decline in pH during the first 6 h, followed
by a slight increase then decrease between 6 and 7 h, and
finally an increase between 7 and 8 h (FIG. 14a). There was
also an accelerating decline in the dissolved oxygen con-
centration (pO,) in the medium during the first 7 h, followed
by a rapid stepwise increase during the next 30 min. How-
ever, the decline phase (indicating aerobic respiration in an
increasingly acidic environment because of acetate excre-
tion) was consistently interrupted by rapid upswings in pO,
concentration (FIG. 14a). These spikes indicate brief pauses
in aerobic metabolism likely due to switches in predominant
substrate use. Indeed, the first of these spikes, at =4 h,
correlates with the depletion of glucose and initiation of
mixed-substrate utilization; the second, at =5 h, with the
depletion of lactate and increased utilization of maltose; and
the third, at =6 h, with the start of joint glycerol and acetate
utilization. Similarly, the first rapid increase in oxygen
concentration at =7 h correlates with the near-depletion of
glycerol, followed by a final increase after 30 min corre-
sponding with the depletion of acetate from the medium
(FIG. 145).

The Mode and Sequence of Substrate Utilization Corre-
late with the Expression of Genes Participating in the
Uptake Modules:

We also prepared mRNA from samples obtained at
30-min intervals between 2 and 8 h and processed them for
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microarray analysis. At the level of substrate uptake path-
ways (FIG. 15) it is evident that the expression of ptsG, the
gene encoding the glucose transporter PtsG/Crr, was at a
high level from the first time point up until the depletion of
glucose from the growth medium, and ptsG expression was
rapidly turned off afterward. Similarly, the expression of the
gene (11dP) encoding the lactate transporter, LIdP, was high
during the first 4.5 h of growth and was turned off rapidly
thereafter, in agreement with the earlier than predicted
utilization of lactate. In contrast, the expression of gene
products responsible for maltose and galactose uptake and
utilization were turned on much later and peaked at 4.5-5.5
h, corresponding with the period of their maximal uptake.
The expression of gene products responsible for glycerol
uptake and utilization peaked in two waves, the smaller one
between 4.5 and 5 h and the larger one at 6.5-7 h, the latter
corresponding to maximal glycerol consumption from the
medium (FIG. 145). Finally, the expression of acs, whose
gene product catalyzes acetate uptake toward the citric acid
cycle, peaked between 6 and 8 h of growth, corresponding
to the maximal uptake of previously secreted acetate from
the growth medium. We note that all these changes are in
good agreement with the FBAWMC model-predicted uptake
of the corresponding substrates (FIG. 15, black tracings).

To assess the quality of the microarray profiles and to
identify genes with expression patterns that are similar to
those of genes encoding enzymes of the uptake pathways we
used TimeSearcher. We find that most genes displaying
expression patterns similar to those of the query genes are
colocalized with them in the same operon. For example, for
the maltose uptake module genes (malEFGK, malQ, and
glk), TimeSearcher identified several other genes (lamB,
malM, malP, malS, and malZ) with similar expression
profiles. These genes are part of various operons within the
maltose regulon, although not all of them directly participate
in maltose uptake. Similarly, for glycerol metabolism sev-
eral related glycerol utilization genes (glpA, glpB, glpC,
gipD, glpQ, and glpT) displayed expression patterns that
were similar to those of the three genes responsible for
glycerol uptake (glpF, glpK, and gpsA). The products of
these genes are part of the pathway for glycerol catabolism
after its uptake.

Activation of Stress Programs Upon Switching Metabolic
Phases

To assess the global state of E. coli transcriptome during
the various metabolic phases of the time course experiment,
we used three different data analysis methods to analyze the
full microarray data. These methods included hierarchical
clustering with optimal leaf ordering (Bar-Joseph Z, et al.,
(1998) Proc Natl Acad Sci USA.) (FIG. 16), principal
component analysis (PCA) (Peterson LE (2003) Comput
Methods Programs Biomed 70:107-119.) (FIG. 18), and a
probabilistic clustering method based on hidden Markov
models (HMMs) (Ernst J, Vainas O, Harbison C T, Simon I,
Bar-Joseph Z (2007) Mol Syst Biol 3:74.) (not shown). It was
evident that during the exclusive glucose utilization phase
there are similar expression profiles in all samples collected
between 2 and 3.5 h, followed by transition in the transcrip-
tome state at the beginning of mixed utilization phase after
4 h (FIG. 16). Within the latter phase, the up-regulation of,
e.g., the genes of the maltose regulon are clearly evident
(FIG. 16).

Samples obtained during the mixed-substrate utilization
phase (5 and 5.5 h) and the late carbon utilization phase (6.5
h) display similar global expression profiles (FIG. 16),
interrupted by a significant alteration in the expression
profile at 6 h that denotes the switch from acetate secretion
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to acetate utilization (FIG. 15). Interestingly, the transcrip-
tome at 6 h displays substantial similarity to that character-
izing E. coli cells at the (near) exhaustion of all substrates
from the medium (7-8 h), a phase that is characterized by
generic stress response (FIG. 16 and FIG. 19). Similarly,
many of the genes up-regulated at the end of the last phase
are also up-regulated to a lesser extent at 3.5 h, the stage of
switching from exclusive glucose utilization to a mixed-
substrate utilization phase.

To further characterize the time-point-specific expression
profiles, we also prepared mRNA samples from individual
mid-logarithmic batch culture E. coli cells (ODgyn=0.2)
grown in glucose-, maltose-, glycerol-, acetate-, lactate, or
galactose-limited medium, processed them for microarray
analysis, and compared the obtained transcriptome profiles
with those of the individual time points (FIG. 16 Lower)
from mixed-substrate experiment. It is evident that the
transcriptome profiles during the glucose-only and mixed-
substrate utilization phases display the highest correlation to
that of glucose- and maltose-limited cultures, especially at
the initial time points, whereas the late carbon utilization
profiles are most similar to that of glycerol- and, especially,
acetate-limited cultures. Highly notable is the transcriptome
profile of galactose-limited cultures, which shows some
similarity to that of cells at the stage of switching from
exclusive glucose utilization to a mixed-substrate-utilization
phase (3.5 h), and an even higher similarity to the transcrip-
tome profiles of cells when all carbon sources are depleted
(8 h). Thus, E. coli cells display a partial adaptation/stress
response at each major metabolic transition, followed by a
generic stress response (FIG. 19) and implementation of a
foraging program (Liu M, et al., (2005) J Biol Chem
280:15921-15927.) at complete exhaustion of all extracel-
Iular substrates that seems to be most primed for acetate and
galactose catabolism.

Discussion

A key aim of systems biology is the identification of the
organizing principles and fundamental constraints that char-
acterize the function of molecular interaction networks,
including those that define cellular metabolism. In the pres-
ent work we have focused on the identification of principles
that define the growth and substrate utilization mode of
bacterial cells in complex environments. Our experimental
results indicate the occurrence of three major metabolic
phases during the growth of E. coli on one type of mixed-
substrate medium. Glucose, which by itself provides the
highest growth rate, is preferentially used by E. cofi, fol-
lowed by simultaneous utilization of maltose, 1-lactate, and
galactose. Glycerol and (secreted) acetate are used at a third
and final stage of growth. In addition, global mRNA expres-
sion data indicate that the organism-level integration of
cellular functions in part involves the appearance of partial
stress response by E. coli at the boundaries of major meta-
bolic phases, and, as previously shown (Liu M, et al., (2005)
J Biol Chem 280:15921-15927), the activation of a foraging
program upon exhaustion of substrates from the growth
medium (FIG. 16).

The simulation results show that the FBAWMC model
introduced here successfully captures all main features of
the examined metabolic activities. First, there is a significant
correlation between in vivo relative maximal growth rates of
E. coli in different carbon-limited media and the in silico
predictions of the FBAwWMC (FIG. 13). Second, the
FBAwWMC model predicts remarkably well the existence of
three metabolic phases and hierarchical mode (i.e., single- or
mixed-substrate utilization) of substrate utilization in
mixed-substrate growth medium (FIGS. 14-16). In essence,
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our modeling approach indicates that when E. coli cells
grow in conditions of substrate abundance their growth rate
is determined by the solvent capacity of the cytoplasm; vice
versa, the solvent capacity should be saturated at the maxi-
mal growth rate. Therefore, when growing in a mixture of
abundant carbon sources E. coli cells should preferentially
consume the carbon source resulting in the highest growth
rate. At solvent capacity saturation, the synthesis of meta-
bolic enzymes for the utilization of a second, less efficient,
carbon source can take place only at the expenses of
degrading metabolic enzymes involved in the consumption
of the more efficient carbon source. However, this would
result in a growth rate reduction and, therefore, cells pref-
erentially using the more efficient carbon source would
outgrow those that allow the simultaneous utilization of
other carbon sources.

We observe, however, two discrepancies of the FBAwWMC
model predictions: (i) a higher than predicted amount of
secreted acetate in the growth medium, and (ii) a somewhat
earlier uptake and consumption of various substrates from
the medium compared with that predicted by the model. The
first discrepancy is likely rooted on the contribution of other
cell components apart from metabolic enzymes. With
increasing growth rate higher concentrations of ribosomal
proteins, mRNA, and DNA are required in addition to
metabolic enzymes (Neidhardt F C, et al., (1990) Physiology
of the Bacterial Cell: A Molecular Approach (Sinauer,
Sunderland, Mass.). This observation indicates that the
FBAwWMC model may underestimate the impact of macro-
molecular crowding and the resulting excretion of acetate.
The second discrepancy is quite likely a consequence of the
first one, as acetate secretion is generally correlated with an
increased carbon source uptake rate (El-Mansi E M, et al.,
(1989) J Ger Microbiol 135:2875-2883).

Taken together, our results show that in silico models
incorporating flux balance and other physicochemical con-
straints can capture increasingly well the metabolic activity
of bacterial cells, and that the maximum enzyme concen-
tration is a key constraint shaping the hierarchy of substrate
utilization in mixed-substrate growth conditions. Yet, while
the metabolic capabilities of a cell are limited by such
constraints, in reality any change in metabolic activity is
controlled by regulatory mechanisms evolved in the context
of these constraints. Therefore, constrained optimization
approaches are also expected to help us better understand
and/or uncover regulatory mechanisms acting in E. coli and
other organisms.

Example 3

Flux Balance in S. Cerevisiae with Molecular
Crowding and Kinetic Modeling

During cellular metabolism the concentration of enzymes
and metabolites are continuously adjusted in order to
achieve specific metabolic demands. It is highly likely that
during evolution global metabolic regulation has evolved
such as to achieve a given metabolic demand with an
optimal use of intracellular resources. However, the size of
enzymes and intermediate metabolites are dramatically dif-
ferent. Enzymes are macromolecules that occupy a rela-
tively large amount of space within a cell’s crowded cyto-
plasm, while metabolites are much smaller. This implies that
metabolite concentrations are likely to be adjusted to mini-
mize the overall ‘enzymatic cost’ (in terms of space cost).

Here we study the validity of this hypothesis by focusing
on the glycolysis pathway of the yeast, Saccharomyces



US 9,449,144 B2

51

cerevisiae, for which a kinetic model is available. We show
that the maximum glycolysis rate determined by the limited
solvent capacity is close to the values measured in vivo.
Furthermore, the measured concentration of intermediate
metabolites and enzyme activities of glycolysis are in agree-
ment with the predicted values necessary to achieve this
maximum glycolysis rate. Taken together these results indi-
cate that the limited solvent capacity constraint is relevant
for S. cerevisiae at physiological conditions. From the
modeling point of view, this work demonstrates that a full
kinetic model together with the limited solvent capacity
constraint can be used to predict not only the metabolite
concentrations, but in vivo enzyme activities as well.
Methods

Kinetic Model of Glycolysis:

We use the S. cerevisiae glycolysis model reported in
Hynne F, Dano S, Sorensen PG (2001) Full-scale model of
glycolysis in Saccharomyces cerevisiae. Biophys Chem 94:
121-163 (see below for details). The only modification is the
extension of the phsophofructokinase (Pik) kinetic model
from an irreversible to a reversible model.

FIG. 21 is a schematic representation of saccharomyces
cerevisiae glycolysis.

The optimization objective is the glycolysis rate

R 1

2]

1-¢

10
2. airi
i=2

where @ is the fraction of cell volume occupied by cell
components other than glycolysis enzymes, r, is the rate of
the i-th reaction relative to the glycolysis rate,

_ VspectliP

) [13]
YT xik;

is the crowding coefficient associated with the i-th reaction,
Ve 18 the specific volume, and ; and k; are the molar mass
and catalytic constant of the enzyme catalyzing the i-th
reaction. Note that the transport (3) and storage (11) reac-
tions have been excluded. The former does not contribute to
the cytoplasm crowding and the latter is considered and step
outside glycolysis.

Given the storage rate and the concentration of ATP, the
rate equation [24] below determines the concentration of
G6P. Furthermore, given this G6P concentration, and the
concentration of extracellular glucose, ATP and ADP, the
rate equation [14] determines the concentration of intracel-
Iular glucose. The remaining metabolite concentrations are
obtained such that to maximize [12].

The following are rate equation models, as reported in
Hynne F, et al., (2001) Biophys Chem 94: 121-163.

Glucose Transport (TRANS):

[GLCX [14]
1+ +
Kicre
Ly
) = YKiare (1 [GLC) . [GEP) [GLC][G6P]]
P [GLC] L Kicre  Kucre  KicreKinere
Kicre v
[GLCx] - [GLC] Limax
Kicre
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Hexokinase (HK):

KapcreKaare + Kacrc[ATP] +
K2a7p[GLC] + [GLC][ATP]
[ATPIIGLC]

[15]

X2 =

Phosphoglucoisomerase (PGI):

K 16
Kacep + [G6P] + —2F [F6P| L16]
Ksrep

[F6P|
K3eq

X3 =

[G6P] -

Phosphofructokinase-1 (PFK):

Kirep
Karpp

[FBP])

[ATP? 2
Ksrapl L+ oa Do +([F6P]+ [FBP])

( [FBP|
[F6P] +
K.

deq

X4 =
Kirep

6 _4F6P
]([F I+ Kargp

This reaction is generally considered as irreversible.
Ignoring its reversibility would result, however, in infinitely
large values for FBP. Therefore, we have made the reversible
extension of this model following Hofmeyr J-H et al., (1997)
The reversible Hill equation: how to incorporate cooperative
enzymes into metabolic models. Compt Appl Biosci 13:
377-385.

Aldolase (ALD):

[GAPIKsprapVsy

KseqVsr
[FBPI[GAP| [GAP|[DHAPIVs,
Ksicap KseqVsy
[CAPI[DHAP]
B

Ksgpp + [FBP] +

[DHAPIKscapVsy
KseqVsr

Xs

[FBP] -

Triosephosphate Isomerase (TPI):

K. 19

Kepnap + [DHAP] + —227 1GAP] L19]
Kecar

[GAP]

X6 =

[DHAP] -
6eq

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH):

[GAP] [BGP| [NAD] [NADH]Y  [20]
K1capKnap| 1 + + 1
= Krcap  Kigcp Kivap  Kinabu
7 [BGPI[NADH]
[GAP|[NAD] - — 227112
K7eq

(1pPEP):

Vg =ke {BGP][ADP]~ks, [PEP][ATP] [21]
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Pyruvate Kinase (PK):
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TABLE 3

Enzyme molar masses and catalytic constants

_ (Korgp + [PEPI)(Koapp + [ADP]) 5 Catalytic
[ADPI[PEP] Molar mass constant
Nomanclature  Enzyme (g/mol) (1/s)
Glycerol 3-Phosphate Dehydrogenase (G3PDH): hie hexokinase 33738.7 o6
psi phosphogluco isomerase 61299.5 120
10 ptk phospho-fructokinase 107971 376
ald fructose 1,6-bisphosphate 39620.9 142
Kisivapu [NAD] [23] aldolase
KIODHAP(l + m(l + m])[DHAP] tpi triosephosphate isomerase 26795.6 3580
gapdh D-glyceraldehyde 35750 144
Kisnapu [NAD]
1+ TNADH 1+ X 3-phosphate dehydrogenase
Xip = L ] LOINAD 15 pk pyruvate kinase 55195.5 632
[DHAP] g3pdh glycerol 3-phosphate 42869.1 333
dehydrogenase
Storage
The catalytic constants were obtained from experimental
=k [ATP][G6P 24 20 : ; :
Vi =k [ATF][G6P] (24] estimates for Saccharomyces carisbergensis (Boiteux et al.,
Design of glycolysis, Phil Trans R Soc Lond B, 1981, 293,
TABLE 2 pgs. 5-22), except for g3pdh that was obtained from an
estimate for Eidolon helvum.
Kinetic constants (as reported in Hynne F, et al. (2001) Biophys 25
Chem 94: 121-163): TABLE 4
Reaction Parameter Value Specific volume and cell density
1: TRANS Kisic 1.7 Parameter Name Value Source
Kir6op 1.2 30
K zeop 72 Vopee Specific volume 0.73 ml/g globular protein [6]
P, 1 Cell density 0.34 g/ml E. coli [7]
Vi max 1015 mM/min
2: HK Koszp 0.1
Lo : 35 TABLE 5
Kipere 0.37
3:PGI Ksoer 08 Reaction rates (Hynne F, et al. (2001) Biophys Chem 94: 121-163):
Karep 0.15
Kieq 0.13 Reaction/pathway nomenclature relative rate
4: PFK Kipep 0.021
Kurzp 0.003¢ 40 glycolysis Vo 27 mM/min
K 0.15 fermentation Torm 0.12
4 : :
K. 800.0% glycerlol Productlol? Terye 0.13
5. ALD v 7 0o lactoniltrile formation Tiner 0.04
’ Vs ) glycogen buildup Toror 0.71
Ksrap 03 HK 1 Term + Tgiye + Tiace + 2lstor
Kscap 4.0 PGI I3 Term + Tgiye + Tiace + Tsior
45
Ksprap 2.0 PFK Iy Yrm t Tgpe T Ttaer T Ysror
Ksicar 10.0 ALD Is Torm + Tgpe T Tiacr + Lstor
Ks.q 0.081 TPI Ts Yerm + Tstor
6: TPI Kepar 1.23 GAPDH 17 2 ferm + Tgiye + Tiaer + 2gior
IpPEP Ig 28 oy + Lgrpe + Lpger + 21,
Kecur 1.27 Yorm + Tgtye + Tiact + sior
K 0.055 PK Ty 2 ferm + Tgiye + Tiaer + 2gior
Geg ’ 50 G3PDH Tio Tgpe * Taer
7: GAPDH Kyoup 0.6
Kopop 0.01
Konup 0.1
Konanw 0.06 TABLE 6
Kreg 0.0055
8: IpPEP kgr 443900 55 Fixed metabolite concentrations (Hynne F, et al. (2001) Biophys
kg, 1529 Chem 94: 121-163):
9: PK Koinp 0.17
Kopzr 0.2 Nomenclature Metabolite Experiment (mM)
10: G3PDH Kionans 0.13 GLCx External glucose 1.6
Kioprar 25 60 ATP Adenosine 5'-triphosphate 2.1
Kiomupe 0.034 ADP Adenosine 5'-biphosphate 1.5
Kiomup 0.13 AMP Adenosine 5'-monophosphate 0.33
11: storage kyy 2.26 NADH Nicotinamide adenine dinucleotide 0.33
(reduced form)
“This parameter was fitted to obtain the best agreement between the measured FBP NAD Nicotinamide adenine dinucleotide 0.65
concentration and the value predicted by the maximization of [12] with all other metabolite 65 (oxidized form)

concentrations fixed to their experimentally determined values.
"From Teusink B et al., (2000) Eur J Biochem 267: 5113-5329.
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III. Experimental Data Used in the Comparison with the
Theoretical Predictions

TABLE 7

Metabolite concentrations, as reported in Hynne F, et al. (2001)
Biophys Chem 94: 121-163.

Concentration

Nomenclature ~ Metabolite (mM)
Go6p Glucose 6-phosphate 4.1
F6P Fructose 6-phosphate 0.5
FBP Fructose 1,6-biphosphate 5.1
GAP Glyceraldehyde 3-phosphate 0.12
DHAP Dihydroxyacetone phosphate 2.5
PEP Phosphoenol pyruvate 0.04

TABLE 8

Enzyme activities A relative to the glycolysis rate R (Teusink B et al.
(2000), Eur J Biochem 267: 5113-5329)

Nomenclature Enzyme Activity (A/R)

pei phosphogluco isomerase 3.15

pik phospho-fructokinase 1.7

ald fructose 1,6-biphosphate aldolase 2.98

tpi triosephosphate isomerase 21.0

gapdh D-glyceraldehyde 3-phosphate 11.0-00.0¢
dehydrogenase

pk pyruvate kinase 10.1

“For the forward and reverse reaction. In this case we used the average, 35.5, to make the
comparison with the theoretical predictions.

Catalytic Constants, Cell Density, Specific Volume:

The catalytic constants were obtained from experimental
estimates for Saccharomyces carisbergensis (Boiteux et al.,
Design of glycolysis, Phil Trans R Soc Lond B, 1981, 293,
pgs. 5-22), except for glycerol 3-phosphate dehydrogenase
that was obtained from an estimate for Eidolon helvum
(Schomburg I, Nucleic Acids Res 30: 47-49). For the cell
density we use an estimate reported for E. coli, p=0.34 g/ml
(Zimmerman S B, et al. (1991) J Mo/ Biol 222: 599-620.).
The specific volume was estimated for several proteins using
the molar volumes and masses reported in (Lee B (1983)
Proc Natl Acad Sci USA 80: 622-626), resulting in average
of 0.73 ml/g, and a standard deviation of 0.02 ml/g.

Optimal Metabolite Concentrations:

The optimal metabolite concentrations are obtained maxi-
mizing [15] with respect to the free metabolite concentra-
tions. In the case of FIG. 254,¢,d, all metabolite concentra-
tions are fixed to their experimental values, except for the
metabolite indicated by the X-axis. In the case of FIG. 3a,b,
all intermediate metabolite concentrations are optimized,
keeping fixed the concentration of external glucose and co
factors (ATP, ADP, AMP, NADH, NAD). In both cases the
reaction rates relative to the glycolysis rate (r) were taken as
input parameters, using the values reported in Hynne F, et al.
Biophys Chem 94: 121-163. The maximization was per-
formed using simulated annealing (Press W H, et al. (1993)
Numerical recipes in C: The art of scientific computing.
Cambridge: Cambridge University Press).

Parameter Sensitivity:

To analyze the sensitivity of our predictions to the model
parameters we have generated random sets of kinetic param-
eters, assuming a 10% variation of the fixed metabolite
concentrations and all kinetic constants except for the cata-
Iytic activities. For the latter we assumed a larger variation
of 50%, because they were estimated from a different
organism. For each set of parameters we make predictions
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for the metabolite concentrations and enzyme activities.
FIG. 24 reports the mean values and standard deviations.
Results

Limited Solvent Capacity Constraint:

The cell’s cytoplasm is characterized by a high concen-
tration of macromolecules resulting in a limited solvent
capacity for the allocation of metabolic enzymes. More
precisely, given that enzyme molecules have a finite molar
volume v, only a finite number of them fit in a given cell
volume V. Indeed, if n, is the number of moles of the i”*
enzyme, then

Z VA Vo=V, [25]

where V, accounts for the volume of other cell components
and the free volume necessary for cellular transport as well.
Equation (14) can be also rewritten as

Y peci Mpel-g,

where p,=n,11,/V is the enzyme density (enzyme mass/vol-
ume), |1, is the molar mass v, is the specific volume, and
$=V_/V is the fraction of cell volume occupied by cell
components other than the enzymes catalyzing the reactions
of the pathway under consideration, including the free
volume necessary for diffusion. The specific volume has
been assumed to be constant for all enzymes, an approxi-
mation that has been shown to be realistic at least for
globular proteins. In this new form we can clearly identify
the enzyme density (or mass, given that the volume is
constant) as the enzyme associated variable contributing to
the solvent capacity constraint. This choice is more appro-
priate than the enzyme concentration C,,=n/V (moles/vol-
ume) because the specific volume is approximately constant
across enzymes, while the molar volume can exhibit sig-
nificant variations. For example, according to experimental
data for several globular proteins the molar volume exhibits
a 70% variation while the specific volume is almost con-
stant, with a small 2% variation.

The solvent capacity constraint thus imposes a limit to the
amount of catalytic units (i.e., enzymes) that can be allo-
cated in the cell cytoplasm. In the following we show that
this in turn leads to a constraint for the maximum metabolic
rate. The rate of the i reaction per unit of cell dry weight
(mol/time/mass) is given by

[26]

_ xikiG;

[27]
R =x;A; = i

_ xkigpi
=

where A, is the specific enzyme activity, C, is the enzyme
concentration in molar units, k; is the catalytic constant and
M is the cell mass. The coefficient x, is determined by the
specific kinetic model: it takes values in the range of O=x,<1,
and it is a function of metabolite concentrations. For
example, if the reaction is described by Michaelis-Menten
kinetics with one substrate then x,=S;I(K,+8S,), where Si is
the substrate concentration and k; is the equilibrium con-
stant. More generally, x, is a function of the concentration of
substrates, products and other metabolites regulating the
enzyme activity. The fact that the reaction rates are roughly
proportional to the enzyme concentrations [27] suggests that
the limited solvent capacity constraint [26] has an impact on
the reaction rates as well. Indeed, from equations [26 and
[27], we obtain

[28]
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where R is the cell metabolic rate (or pathway rate), r=R,/IR
is the rate of reaction i relative to the metabolic rate, and

[29]

VspecHifP
= et
xiki

where p=M/V is the cell density. We refer to a, as the
crowding coefficients because they quantify the contribution
of each reaction rate to molecular crowding. The crowding
coeflicient of a reaction i increases with increasing the
enzyme’s molar mass [, and decreases with increasing
catalytic activity k,. It is also a function of the metabolite
concentrations through x,.

Hypothetical Three Metabolites Pathway:

To illustrate the impact of the limited solvent capacity
constraint, we first analyze a hypothetical example, in which
we use the relative reaction rates as input parameters, and
the metabolite concentrations are the variables to be opti-
mized. Given the reaction rates and the “optimal” metabolite
concentrations, the enzyme activities are determined by
equation [27]. Finally, the maximum metabolic rate is com-
puted using equation [28].

Consider a metabolic pathway consisting of two revers-
ible reactions converting metabolite M, into M, (reaction 1)
and M, into M, (reaction 2), catalyzed by enzymes e, and e,,
respectively (FIG. 22, inset). The reaction rates per unit of
cell mass, R, and R,, are modeled by reversible Michaelis-
Menten rate equations

_ [My] = [M2]/Kieq 1 [30]
T Ku MO+ KulM /K L M

_ [M2] — [M3]/ Koeq c 1 [31]
2T Knt M+ KnlM/Ky M

where K, and K, are the equilibrium constants of reac-
tion 1 and 2, respectively, K,, is the Michaelis-Menten
constant of metabolite m in reaction i, M is the cell mass and
C, is the concentration of the i,, enzyme. For the purpose of
illustration, we assume that the kinetic parameters associ-
ated with both reactions are the same, all Michaelis con-
stants equal to 1 mM, and fixed pathway ends metabolite
concentrations [M, =3 mM and [M,]|=1 mM. Furthermore,
mass conservation for M, implies that R, =R,=R (r,=r,=1) in
the steady state, where R is the pathway rate. Under these
approximations the pathway rate [28] is given by

R 32]

Kiy +[Mi] + Ku[M]/ K2
[M] = [M2]/K1eq

Ky + [Ma] + Ko [M3]/ Kp3 |7t
[M2] = [M3]/ K2eq ’

where R, =(1-®)k v, 1,p. At this point the value of R, is
not needed and we focus on the relative pathway rate R/R .
When reaction 1 is close to equilibrium [M,]~[M, K, =3
mM, the first term in the right hand side becomes very large,
resulting in a small pathway rate (FIG. 22). When reaction
2 is close to equilibrium [M, |=[M;]/K,,,=1 mM, the second
term in the right hand side becomes very large, again
resulting in a small pathway rate (FIG. 22). At an interme-
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diate [M,]* between these two extremes the pathway rate
achieves its maximum. Therefore, given the solvent capacity
constraint, there is an optimal metabolite concentration
resulting in a maximum pathway rate.

S. cerevisiae Glycolysis:

Next, we investigated whether the observation of an
optimal metabolite concentration for maximum pathway
rate extrapolates to a more realistic scenario. For this pur-
pose we use the glycolysis pathway of the yeast S. cerevisiae
(FIG. 23A) as a case study. Glycolysis represents a universal
pathway for energy production in all domains of life. In S.
cerevisiae it has been studied extensively resulting in the
description of a rate equation model for each of its reactions.
In particular, we consider the kinetic model developed in
Hynne F, et al. (2001) (see Methods). To compare our
predictions with experimentally determined values we con-
sider the glycolysis reaction rates and metabolite concen-
trations reported in Hynne F et al. (2001) and the enzyme
activities reported in (Teusink B, et al. (2000).

In analogy with the three metabolites case study (FIG.
22), first we investigate the dependency of the glycolysis
rate R on the concentration of a given metabolite. In this case
we fix all other metabolite concentrations and all relative
reaction rates to their experimentally determined values. By
doing so the predicted glycolysis rate is an implicit function
of the free metabolite concentration alone, through equation
[28]. For example, FIG. 23B displays the maximum meta-
bolic rate R as a function of the concentration of fructose-
6-phosphate (F6P). R is predicted to achieve a maximum
around a F6P concentration of 0.4 mM, close to its experi-
mentally determined value of 0.5 mM (red triangle in FIG.
23B). Similar conclusions are obtained for D-glyceralde-
hyde-3phosphate (GAP) (FIG. 23C) and glycerone-phos-
phate (DHAP) (FIG. 23D). This analysis corroborates that
there is an optimal metabolite concentration maximizing R
and, more importantly, that this concentration is very close
to the experimentally determined metabolite concentrations.
In all cases the measured metabolite concentrations are
within the range of 50% or more of the maximum glycolysis
rate.

To further test the optimal metabolite concentration
hypothesis, we perform a global optimization and simulta-
neously compute the optimal concentrations of the glyco-
lysis intermediate metabolites. In this case we fix the con-
centrations of external glucose and co-factors and all relative
reaction rates to their experimentally determined values. By
doing so the predicted glycolysis rate is an implicit function
of the glycolysis intermediate metabolite concentrations,
through Equation [28]. The optimal intermediate metabolite
concentrations are those maximizing Equation [28]. FIG.
24A displays the predicted optimal metabolite concentra-
tions as a function of their experimentally determined values
(black symbols), the line representing a perfect match. The
agreement is remarkably good given the wide range of
metabolite concentrations. For phospho-enolpyruvate
(PEP), the predicted value is very sensitive to the model
parameters, as indicated by the wide error bars. For fructose
1,6-biphosphate (FBP) the predicted value is smaller by a
factor of five than the experimental value, but it is still within
range. Taken together, these results indicate that the mea-
sured concentrations of intermediate metabolites in the S.
cerevisiae glycolysis are close to the predicted optimal
values maximizing the glycolysis rate given the limited
solvent capacity constraint.
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Using the optimal intermediate metabolite concentrations
we can make predictions for the enzyme activities as well.
Indeed, from the first equality in [27] it follows that

[33]

The reaction rates relative to the glycolysis rate r, are
obtained from experimental data, while x, are obtained after
substituting the predicted optimal metabolite concentrations
on the reaction’s kinetic models. FIG. 24B displays the
predicted enzyme activities (in units of the glycolysis rate)
as a function of the experimentally determined values (black
symbols), the line representing a perfect match. In most
cases we obtain a relatively good agreement between experi-
mentally measured and predicted values, with the exception
of phosphofructokinase (Ptk), for which the measured
enzyme activities are significantly overestimated. Of note,
for pyruvate kinase (pk) the predictions are significantly
affected by the model parameters, as indicated by the wide
error bars.

The preceeding analysis does not exclude the possibility
that other constraints could result in a good agreement as
well. To address this point we consider the more general
optimization objective R=(1-¢)/2,_M(ax)” [34], param-
etrized by the exponent H. Although this objective is not
inspired by some biological intuition, it allows to explore
other possibilites beyond the original case H=1. FIG. 24
shows our predictions for the case H=0.1 (red symbols) and
H=10 (blue symbols), representing a milder and a stronger
dependency with the crowding coefficient a,, respectively.
For H=0.1, 1.0 and 10 the predicted metabolite concentra-
tions are in good agreement with the experimental values.
These results indicate that it is sufficient that the optimiza-
tion objective is a monotonic decreasing function of the
crowding coefficients. When the latter is satisfied the
metabolite concentrations are up to a great extent con-
strained by the kinetic model. This is not, however, the case
for the enzyme activities. For H=0.1 and the enzymes pfk,
tpi and pk, there is a large deviation from the perfect match
line. For H=0 and the enzymes (tpi and pk, there is a large
deviation from the perfect match line as well. Overall, H=1
gives the better agreement between enzyme activity predic-
tions and their measured values. In addition, it provides a
clear biophysical interpretation of the solvent capacity con-
straint (H=1).

Finally, we use equation [28] to compute the maximum
glycolysis rate as determined by the limited solvent capacity
constraint. The global optimization predicts the glycolysis
rate R=(1-®)x12.5 mmol/min/g dry weight. Taking into
account that about 30% of the cell is occupied by cell
components excluding water, that proteins account for ~45%
of the dry weight, and that of these glycolysic enzymes
account for ~22% of the protein mass we obtain 1-$0.03.
Therefore, given that glycolysis enzymes occupy only 3% of
the cell volume, we obtain R~0.38 mmol/min/g dry weight.
This prediction is in very good agreement with the experi-
mentally determined glycolysis rate of S. cerevisiae, ranging
between 0.1 to 0.4 mmol/min/g dry weight.

The successful modeling of cell metabolism requires the
understanding of the physicochemical constraints that are
relevant at physiological growth conditions. In our previous
work focusing on E. coli we have reported results indicating
that the limited solvent capacity is an important constraint
on cell metabolism, especially under nutrient rich growth
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conditions. Using a flux balance approach that incorporates
this constraint we predicted the maximum growth rate in
different carbon sources, the sequence and mode of substrate
uptake and utilization from a complex medium, and the
changes in intracellular flux rates upon varying . coli cells’
growth rate. More importantly, these predictions were in
good agreement with experimentally determined values.

Here we have extended the study of the impact of the
limited solvent capacity by (i) considering a different organ-
ism (S. cerevisiae), and (ii) a full kinetic model of glycolysis.
Using the full kinetic model of S. cerevisiae glycolysis, we
have demonstrated that the predicted optimal intermediate
metabolite concentrations and enzyme activites are in good
agreement with the corresponding experimental values. Dis-
crepancies were only observed in association with two
different steps in the glycolysis pathway, namely the reaction
catalyzed by pjk and the reactions between BPG and PEP. It
cannot be excluded that these discrepancies are associated
with deficiencies of the kinetic model. Furthermore, the
glycolysis rate achieved at the optimal metabolite concen-
trations is in the range of the experimentally measured
values.

From the quantitative modeling point of view our results
indicate that a full kinetic model together with the solvent
capacity constraint can be used to make predictions for the
metabolite concentrations and enzyme activities. Thus, we
propose the simultaneous optimization of intermediate
metabolite concentrations, maximizing the metabolic rate
given the solvent capacity, as a method to computationally
predict the concentrations of a metabolic pathway’s inter-
mediate metabolites and enzyme activities. We have dem-
onstrated the applicability of this method by computing the
concentration of S. cerevisiae glycolysis intermediate
metabolites, resulting in a good agreement with published
data.

The high concentration of macromolecules in the cell’s
cytoplasm imposes a global constraint on the metabolic
capacity of an organism. No clear explanation has been
provided to support that choice. Our starting postulate is an
undeniable physical constraint, the total cell volume. Under
this constraint, the enzyme molar volumes are the primary
magnitude quantifying the enzymatic cost. In turn, since the
enzyme-specific volumes are approximately constant, we
can use the enzyme density (mass/volume) as an alternative
measure of enzymatic cost. This modeling framework has
advantages and disadvantages with respect to more tradi-
tional approaches based on dynamical systems modeling. As
an advantage, our method does not require as input param-
eters the enzyme activities but rather make quantitative
predictions for them. On the other hand, our method is based
on a steady state approximation. Therefore, in its present
form, it cannot be used to understand dynamical processes,
such as the observed metabolite concentration oscillations in
S. cerevisiae cells when growing at high glucose concen-
trations.

Example 4

Serine Biosynthesis with One Carbon Catabolism
and the Glycine Cleavage System Represents a
Novel Pathway for ATP Generation

Previous experimental evidence indicates that some can-
cer cells have an alternative glycolysis pathway with net
zero ATP production, implying that upregulation of glyco-
lysis in these cells may not be related to the generation of
ATP. Here we use a genome-scale model of human cell
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metabolism to investigate the potential metabolic alterations
in cells using net zero ATP glycolysis. We uncover a novel
pathway for ATP generation that involves reactions from the
serine biosynthesis, one-carbon metabolism and glycine
cleavage systems, and show that the pathway is transcrip-
tionally upregulated in an inducible murine model of Myc-
driven liver tumorigenesis. This pathway has a predicted
two-fold higher flux rate in cells using net zero ATP glyco-
lysis than those using standard glycolysis and generates
twice as much ATP with significantly lower rate of lactate,
but a higher rate of alanine secretion. Thus, in cells using the
standard- or the net zero ATP glycolysis pathways a signifi-
cant portion of the glycolysis flux is always associated with
ATP generation, and the ratio between the flux rates of the
two pathways determines the rate of ATP generation and
lactate and alanine secretion during glycolysis.

Oxidative phosphorylation (OxPhos) in the mitochondria
is the major pathway for ATP generation in normal cells
under normal oxygen conditions (normoxia), generating 32
mole of ATP per mole of glucose. In contrast, under condi-
tions of oxygen limitation (hypoxia), the mitochondrial
activity is down-regulated and cells switch to glycolysis for
ATP generation that yields only 2 mole of ATP per mole of
glucose. Surprisingly, as first observed by Warburg, the
metabolism of cancer cells is frequently characterized by a
significant upregulation of glycolysis even under normoxic
conditions, with both an increased glucose uptake and
excretion of lactate (Warburg effect, aerobic glycolysis).
More recently, it became evident that the Warburg effect is
not unique to cancer cells alone. Indeed, both rapidly
proliferating normal cells and non-proliferating cells with
high metabolic activity display high levels of glycolysis with
lactate excretion under normoxic conditions. Despite the
importance of OxPhos and aerobic glycolysis in ATP gen-
eration, previous empirical evidence indicates that some
cancer cells also utilize an alternative glycolysis pathway
with net zero ATP generation. This striking observation
implies a physiological role for aerobic glycolysis other than
ATP generation. One such role may be the capacity of
glycolysis to fulfill the need of rapidly proliferating cells for
precursor metabolites. However, it has been shown previ-
ously that the need for precursor metabolites in itself is not
sufficient to explain the high glycolysis rates observed in
proliferating cells. Instead, molecular crowding and its
resulting constraint on macromolecular concentrations is the
key factor determining the Warburg effect. The high density
of macromolecules in the cell imposes limits on the total
mitochondrial content per unit of cell volume and the total
content of ribosomes and metabolic enzymes as well. In
turn, the inherent limitation in mitochondrial density results
in an upper bound on the maximum achievable OxPhos
capacity. We have shown previously that this maximum is
achieved at physiological conditions and that it results in a
metabolic switch involving an upregulation of glycolysis
and lactate excretion. Yet, all these results were obtained
making use of the standard glycolysis pathway, with a yield
of 2 moles of ATP per mole of glucose.

Here we investigate the metabolic flux redistributions in
proliferating cells that utilize the alternative glycolysis path-
way with net zero ATP production. To this end we improve
on our previous flux balance model of human cell metabo-
lism by more precisely accounting for protein synthesis,
including a self-consistent constraint that all ribosomal-,
enzyme associated-, and non-metabolic proteins need to be
accounted for by the rate of protein synthesis, which is
proportional to the ribosomal density. We also make a more
precise accounting of the molecular crowding constraint by
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considering mitochondria as a subcellular compartment
independent from the cytosol. Using this model we uncover
a novel pathway for ATP generation that involves reactions
in the serine biosynthesis, one-carbon metabolism and the
glycine cleavage system, and show that the pathway is
transcriptionally upregulated in an inducible murine model
of Myc driven liver tumorigenesis. The flux rate of this
pathway is predicted to be two-fold higher in cells with net
zero ATP glycolysis relative to cells with the standard
glycolysis. Furthermore, it accounts for most of the glyco-
lysis rate in cells with net zero ATP glycolysis.
Results

As a starting point, we utilize a genome-scale metabolic
reconstruction of a generic human cell that includes most
biochemical reactions catalyzed by enzymes encoded in the
human genome essentially as described in Mo M L, et al.
((2007) A genome-scale, constraint-based approach to sys-
tems biology of human metabolism. Mo/ Biosyst 3: 598-60).
We add auxiliary reactions to represent nutrient uptake,
excretion of metabolic byproducts, basal ATP demand
needed for cell maintenance, basal rate of protein degrada-
tion, synthesis of cell biomass components (proteins, lipids,
RNA and DNA) and cell proliferation (biomass compo-
nents—cell). We assume that the cell is in a steady state
where the production and consumption of every metabolite
and macromolecules balances, known as the flux balance
constraint. We use Smi to denote the stoichiometric coeffi-
cient of metabolite m in reaction i. We use fi to denote the
steady state reaction rate (flux) of the i’ reaction in the
metabolic network, where all reversible reactions are rep-
resented by a forward and backward rate, respectively.
Reactions are divided into nutrient import reactions (RI),
reactions taking place outside the mitochondria (RnM) and
reactions taking place in the mitochondria (RM). We use ¢,
to denote the relative cell volume fraction occupied by the
cth cellular compartment, where a compartment represents
the overall contribution of macromolecules of certain type
(e.g., ribosomes) or of certain cell organelle (e.g., mitochon-
dria). Specifically, here we consider proteins that do not
form part of enzyme complexes or ribosomes (P,), all
metabolic enzymes catalyzing reactions outside the mito-
chondria (EnM), all metabolic enzymes catalyzing reactions
in the mitochondria (EM), ribosomes (R), and mitochondria
(M). We assume the proliferation rate (1) and the total
relative volume fraction occupied by macromolecules and
organelles (¢,,,,) are known and are given as input param-
eters of the model. Finally, we estimate the metabolic fluxes
and compartment densities as the solution of the following
optimization problem:
find the fi and ¢, that minimize the sum of nutrient import
costs:

e &

ieRl

subject to the metabolic constraints: flux balance constraints:

Z Spifi=0 [36]
minimum/maximum flux constraints:
Vi}ninsﬁsvimax [37]
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minimum/maximum volume fraction constraints:
0=,

molecular crowding constraints:

[38]

Z a; fi < Ppm [39]

ieRnM

Z aifi < ¢

iERM
A, ATP fATP_synthase < P
QR fprotein_synthesis < PR

Opo + PEnns + PR + Pt =< Drmax

where c, is the nutrient import cost associated with the
uptake reaction i, ai=vi/keff,i are the crowding coefficients
of metabolic enzymes (enzyme molar volume/enzyme effec-
tive turnover), aR=vR/kR is the ribosome crowding coeffi-
cient (ribosome molar volume/protein synthesis rate per
ribosome), and a,, 7=V, 5/1s, the crowding coeflicient of
mitochondria ATP generation (ATP synthesis rate per mito-
chondria mass/mitochondria specific volume).

The estimation of all the model parameters is presented in
the Methods section. Here we discuss some of them that
deserve particular attention. The cost of importing mol-
ecules is in general determined by their size, charge and
hydrophilic properties. In a first approximation we assume
that the cost of importing molecules is proportional to their
size and use the molecular weight as a surrogate for size.
Within this approximation the import cost ci is equal to the
molecular weight of the molecule imported in the auxiliary
uptake reaction i. The effective turnover numbers keff,i,
quantify the reaction rate per enzyme molecule. For
example, for an irreversible single substrate reaction satis-
fying Michaelis-Menten kinetics, keft=kS/(K+S), where k is
the enzyme turnover number, K the half-saturation concen-
tration and S the substrate concentration.

The turnover numbers of some human enzymes are
reported in the BRENDA database. They have a typical
value of 10 see and a significant variation from 1 to 100
sec™’. However, for most reactions we do not know the
turnover number, the kinetic model, or the metabolite con-
centrations, impeding us to estimate keff. To cope with this
indeterminacy we performed a sampling strategy, whereby
the keff,i were sampled from a reasonable range of values,
and then focused on the predicted average behavior and 90%
confidence intervals (see Methods for additional details).
The typical enzyme crowding coefficient is about
2i~0.00013 (mM/min)~", which is interpreted as follows: to
maintain a reaction rate of 1 mM/min we need to allocate a
relative cell volume of 0.00013 (0.013%) for the corre-
sponding enzyme. The crowding coefficients are signifi-
cantly larger for ribosomes and the mitochondria: az=3.6
(mM/min)™" and a,, ,,»=0.017 (mM/min)~", respectively.

The flux balance equation for proteins (equation (36) with
m=proteins) is formulated more generally than before. Pre-
vious models have assumed a constant protein concentration
and have not taken into account the self-consistent need to
synthesize all the proteins in enzyme complexes and ribo-
somes. In contrast, here we account for three major catego-
ries, proteins not associated with metabolism, proteins that
are components of enzyme complexes, and ribosomal pro-
teins, with their concentrations (moles/cell volume) denoted
by P,, P, and P, respectively. In proliferating cells, these
concentrations will decrease at a rate (u+k,)(Po+Pz+Py),

10

15

20

35

40

45

50

55

64

where 11 denotes the proliferation rate and kD the basal rate
of protein turnover. The total concentration of proteins in
enzyme complexes can be estimated as Pz=np F=n, 2 f/
k 4> where np; is the average number of proteins in an
enzyme complex (about 2.4) and E is the total concentration
of metabolic enzymes. Similarly, Pr=n,z0/Vz, Where n, is
the number of proteins in a ribosome (82 for the 80S
ribosomes) and ¢ /vy is the concentration of ribosomes.
Putting all these elements together, the balance between
protein turnover and synthesis implies fProtein_sysnthesis=
(u+kD)[PO+nPEXifi/keff,i+(nPR/VR)$R], where the term
(u+kD)PO is the only one considered in previous models. In
an effective manner, each metabolic reaction contributes to
a component of protein synthesis, with a stoichiometric
coeflicient (+kp)np./k, -, quantifying the amount of protein
necessary to keep the concentration of the corresponding
enzyme constant. Similarly, a constant ribosome volume
fraction also accounts for a component of protein synthesis,
with a stoichiometric coefficient (u+k,)nz/v; quantitfying
the amount of protein necessary to keep the ribosomes
concentration constant. The rate of protein synthesis
accounting for this effective protein dilution/degradation
thus models the autocatalytic nature of cell metabolism,
whereby the macromolecular complexes catalyzing the
metabolic reactions ultimately are themselves a product of
metabolism.

To model the alternative glycolysis pathway we replaced
the pyruvate kinase catalyzed reaction: Phosphoenolpyru-
vate+ ADP+H"—Pyruvate+ATP, by the ATP independent
reaction: Phosphoenolpyruvate+H*—Pyruvate+Phosphate.
In the latter reaction phosphoglycerate mutase (PGM1) is a
candidate phosphate acceptor, which is then dephosphory-
lated by a yet unknown mechanism.

Changes in the Relative Macromolecular Densities with
Increased Cell Proliferation

FIG. 25 shows the predicted relative volume fraction
occupied by non-mitochondrial Enzymes (¢g,,,~2,! 5,.22.5,),
mitochondria (¢,,), and ribosomes (¢5) as a function of the
proliferation rate for cells growing in a medium containing
glucose, glutamine, essential amino acids, and oxygen. The
ribosomal density increases monotonically with increasing
the proliferation rate in a nonlinear fashion, reaching a
maximum of 10% of the cell volume at the highest prolif-
eration rate of approximately 2.79/day (minimum doubling
time of In(2)/w,,,.=6 hours) (FIG. 25, circles). At low
proliferation rates the mitochondrial density increases with
increasing the proliferation rate from 10% to about 30% of
the cell volume (FIG. 25, triangles). However, beyond a
proliferation rate of about 0.8/day (doubling time 21 hours),
the mitochondrial density decreases with increasing the
proliferation rate. This is in turn accompanied by a dramatic
increase in the density of metabolic enzymes (FIG. 25,
squares). Our model thus predicts that when switching from
low to high proliferation rates, the cell makes a transition
from a mitochondria dominated molecular crowding regime
to one dominated by enzymes+ribosomes (FIG. 25).

The impact of altering the different model parameters on
the behavior of the model can also be tested. Larger values
of the mitochondrial crowding coefficient a,,, e.g., due to a
decrease in mitochondrial efficiency for ATP generation, will
cause a decrease of mitochondrial density at lower prolif-
eration rates. Larger ribosome crowding coefficient a, e.g.,
due to a decrease in protein synthesis efficiency, will result
in a faster increase of the ribosome density with increasing
the proliferation rate, and a consequently faster decrease of
the mitochondria density. Similarly, an increase in the aver-
age crowding coefficient of metabolic enzymes will cause a
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faster increase of the total enzyme concentration with
increasing the proliferation, resulting in a faster decrease of
the mitochondrial density as well. Cancer cells are charac-
terized by partial alterations in all of these components,
potentially resulting in a more dramatic effect than that
depicted in FIG. 25. In particular, mutations leading to
damaged mitochondria will enhance the effect, as originally
hypothesized by Warburg.
Metabolic Switch from Low- to High Proliferation Rates

The predicted transition in the macromolecular composi-
tion of the cell is accompanied by a global switch in the
cell’s metabolic state (FIG. 26). At the proliferation rate of
about 0.8/day (doubling time 21 hours) the model predicts a
substantial increase in glucose uptake, sudden activation of
glutamine uptake and a-ketoglutarate dehydrogenase activ-
ity, complete deactivation of pyruvate decarboxylase (PCm)
and activation of pyruvate dehydrogenase (PDHm). The
activity of pyruvate carboxylase in the low proliferation
regime, where there is no glutamine uptake, is consistent
with recent experimental data showing that pyruvate car-
boxylase is needed for growth without glutamine. The
activation of glutamine uptake at high proliferation rates is
also in agreement with what have been observed experi-
mentally. We also observe activation of lactate excretion at
high proliferation rates, the hallmark of the Warburg effect.
Several notable changes take place around the pyruvate
branching point (FIG. 26). Most noticeably, the glycolysis
pathway (FIG. 26) is truncated at 3-phosphoglycerate and
the flux over the ATP-decoupled pyruvate kinase-catalyzed
reaction is zero at all proliferation rates. We emphasize that
we have not imposed a zero flux over this reaction, and the
zero flux is a prediction of the model itself. Phenylalanine,
isoleucine, lysine and valine are the major sources of TCA
cycle intermediates and pyruvate (via malate) at low prolif-
eration rates. However, at high proliferation rates the TCA
cycle intermediates and pyruvate are instead generated from
glutamine. The cytosolic- (LDH-L) and mitochondrial
L-lactate dehydrogenases (LDH-Lm) form a cycle between
pyruvate and lactate. At low proliferation rates, LDH-L
converts pyruvate to lactate and LDH-Lm converts lactate
back to pyruvate, both reactions working at the same rate
(FIG. 26, pyruvate-lactate loop, dashed lines). At high
proliferation rates the cycle is reverted, LDH-L converting
lactate to pyruvate and LDH-Lm pyruvate back to lactate
(FIG. 26, pyruvate-lactate loop, solid lines). In the latter case
the LDH-Lim catalyzed reaction has a higher rate, resulting
in the net production of lactate, which is then excreted.
Finally, at high proliferation alanine is produced from pyru-
vate and is then excreted. We note the amino acid selectivity
for pyruvate and TCA cycle intermediates at low prolifera-
tion rates depends on the specific choice of nutrient import
cost in equation (1). For example, assuming that the cost of
nutrient uptake is equal for all nutrients, we obtain that
tryptophan is utilized as a source of pyruvate at low prolif-
eration rates (data not shown). However, the high fluxes of
glutamine uptake, the 3-phosphoglycerate shift towards ser-
ine biosynthesis, and alanine excretion at high proliferation
rates, and the results described below are independent of the
choice of nutrient cost coefficients.
Novel Pathway for ATP Generation

When considering the molecular crowding constraint, our
simulations show that at high proliferation rates most of the
glycolysis rate is diverted towards the biosynthesis of serine
(FIG. 26). However, this flux rate exceeds by more than 10
fold the serine requirements for protein synthesis (FIG. 26,
serine to protein synthesis, top center panel). Therefore, we
hypothesized that cells utilizing the net zero ATP glycolysis
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may overexpress some alternative pathway for ATP genera-
tion. To test this hypothesis we inspected the genome-scale
reaction rate predictions, focusing on reactions producing
ATP. Following this approach we identified the reactions
with high rates of ATP production in cells with a net zero
ATP glycolysis at different proliferation rates. At low pro-
liferation rates (0.03/day, doubling time 24 days) ATP syn-
thase was the dominant reaction, supplying most of the ATP
required for cell maintenance (FIGS. 27A and 27B, left
panels). On the other hand, at high proliferations rates
(2.79/day, doubling time 6 hours) the formate-tetrahydrofo-
late ligase (FTHFL), working in the reverse direction to
form ATP, is the dominant reaction (FIG. 27A, right panel).
Formate-tetrahydrofolate ligase is also active in cells with
the standard glycolysis (FIG. 27B, right panel). However, in
the case of standard glycolysis phosphoglycerate kinase and
pyruvate kinase are the dominant reactions at high prolif-
eration rates (FIG. 27B, right panel). Finally, we note that
the molecular crowding constraint is determinant in the
differential utilization of ATP synthase and FTHFL at high
proliferation rates (FIG. 27B, HIGH), because its removal
from the model (which mathematically is equivalent to
Setting ¢max=c in equation (39)) results in a dramatic
increase in the ATP synthase rate and a decrease of the
FTHFL rate at high proliferation rates (FIG. 28, HIGH).

By tracking back the flux from the formate-tetrahydrofo-
late ligase-catalyzed reaction to glycolysis we uncovered a
novel pathway for ATP generation (FIG. 29). The pathway
is composed of three main steps. First, synthesis of L-serine
from the glycolysis intermediate metabolite 3-phosphoglyc-
erate, using NAD and L-glutamate as cofactors (FIG. 29B),
with the overall reaction (40) 3-phosphoglycerate+L-gluta-
mate+NAD*+H,O0—L-Serine+a-Ketoglutarate+H* +
NADH+Phosphate Second, the conversion of L-serine to
glycine with a concomitant one-carbon metabolism cycle,
resulting in the net generation of 1 mole of ATP per mole of
serine transformed, using NADP+ as a cofactor (FIG. 45),
with the overall reaction L-Serine+NADP*+H,O+ADP+
Phosphate—Glycine+NADPH+2 H*+ATP

Finally, the conversion glycine to ammonium (NH4) in
the mitochondria with a concomitant one-carbon metabo-
lism cycle, using NAD* and NADP* as cofactors (FIG. 29D
or 29E), with the overall reaction:

Glycine+NADP*"+NAD"+H,0+ADP+Phos-
phate—NH,+CO,+NADPH+NADH+2 H*+ATP.

This pathway has a net yield of 2 mole of ATP per mole
of 3-phosphoglycerate, therefore 4 mole of ATP per mole of
glucose. Furthermore, when compared to the standard gly-
colysis, the net zero ATP glycolysis manifests a significant
decrease in lactate excretion while increasing the alanine
excretion (FIGS. 27A AND 27B, right panel).

Although the reactions in the reaction cycle shown in FIG.
29C are all annotated as reversible in the human metabolic
network reconstruction (Schellenberger J, et al. (2010) BMC
Bioinformatics 11: 213), the cycle may not work in the
direction of ATP production due to thermodynamic con-
straints. FTHFL can efficiently catalyze the synthesis of ATP
in the bacterium Clostridium cylindrosporum. However, it
remains to be elucidated whether this is also feasible in
human cells, where the tri-functional enzyme Cl-tetrahy-
drofolate synthase is responsible for the methylene-tetrahy-
drofolate dehydrogenase, methenyl-tetrahydrofolate cyclo-
hydrolase and FTHFL activities. To address this issue, we
have analyzed a kinetic model of the reaction cycle shown
in FIG. 29C, focusing on the cytosolic enzymes alone. The
model is described below and is based on a previous model
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of folate metabolism. We demonstrate that the kinetic model
has a stable steady state in the direction of ATP production,
indicating that the novel pathway is thermodynamically
feasible.

Although the reactions in the reaction cycle shown in FIG.
29C are all annotated as reversible, the cycle may not work
in the direction of ATP production due to thermodynamic
constraints. As indicated above, to address this issue, we
analyze a kinetic model of the reaction cycle shown in FIG.
4b, focusing on the cytosolic enzymes alone. The four
reactions in FIG. 29C are modeled as reversible random
multimolecular reactions:

P [thf] [ser — L]
SHMT.f Kspurng + [thf] Ksuprser-r + [ser — L]

[mlthf] lgly] }
SHMT
Ksumrmumg + [mIthf] Kspnr, gy + [g0]

43)

fSHMT = {

kstmr,r

f MTHFD = (44)

{ [mlthf]

k
MTHED.f & MTHFD,mithf + [MIA]] KTHED nadp + [Radp
[methf] [radph]

Kururp mens + [methf] Kyrupp padpn + [nadph)

[nadp]

i kmrHFD,

}EMTHFDI

kape —— et
Y KMTHEC methf + [methf]
[10fthf]
Kururc,10pns + [10fthf]

(45)
Sururc = {

kmrarc,r }EMTHFDI

] [10/tAf] [adp] 46)
FTHELS Krrurriopmg + [10fthf] Kerurradp + ladp)
[pi] & [thf]
KernrLpi + [pil FTHFLr KrerurLmg + [thf]
[atp] [for]
+ latp] Kerupr, for + [for]

fFTHFL ={

Evrnrpt
Krrurrap

where f,,,.,., denotes the net reaction rate, K, ., and
k forward and backward turnover numbers,
reaction,metabolire 1€ half-saturation constant, [metabolite]
the corresponding metabolite concentration, and E,,,_ . the
concentration of the corresponding enzyme. Here the fol-
lowing abbreviations have been used: tetrahydrofolate (thf),
5,10-methylene hydrofolate (mlthf), 5,10-methenyltetrahy-
drofolate (methf), 10-formyltetrahydrofolate (10fthf), L-ser-
ine (ser-L), glycine (gly), formate (for), serine hydroxym-
ethyltransferase =~ (SHMT),  methylenetetrahydrofolate
dehydrogenase (MTHFD), methenyltetrahydrofolate cyclo-
hydrolase (MTHFC), and S5-formethyltetrahydrofolate
cycloligase (FTHFL). We note in human cells the MTHFD,
MTHFC and FTHFL activities are carried on by a tri-
functional enzyme encoded by the MTHDI1. The kinetic
parameter values are reported in Table S3, below. These
parameters where obtained from Nijhout H F, et al. ((2004)
J Biol Chem 279:55008-16) or through references cited in
the BRENDA database (Scheer M, et al. (2011) Nucleic
Acids Res 39:D670-6). In humans the cytosolic enzyme
activities of MTHFD, MTHFC and FTHFL are carried by
the tri-functional enzyme Cl-tetrahydrofolate synthase,
encoded by the SMTHFD1 gene. Therefore, the reaction
cycle shown in FIG. 29C is regulated by the activity of two
enzymes, serine hydroxymethyltransferase (SHMT) and
Cl-tetrahydrofolate synthase (SMTHFD1). The total con-
centration of these two enzymes ESHMT+SMTHFD1 deter-
mines how fast the system evolves to a steady state and the
absolute rate at steady state, but it has no impact on the
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metabolite concentrations at steady state. Taking this fact
into consideration we focus on the system behavior as a
function of the relative concentration of one of the enzymes,

SHMT for example By rprpi/ BsznertBsprzro)-

TABLE 9

Model parameters. All half-saturation constants K, ., sion, mewbotize
and metabolite concentrations [metabolite] are expressed in mM and

all turnover numbers k, in 1/sec.
Parameter Value Source
SHMT
Kginary 958 [3]
Koty 0.60 Estimated as Kszaszr Vinar s/ Vinaxys
axf 40,000 [1]
e 25,000 [1]
S 005 1
S ——— 0.6 (1]
Ksernarmims 3.2 [1]
Ksemrgn 10 [1]
MTHFD
Sp— 10 [4]
Kasrzarp Kagreimp £V mae sV e s
axf 200,000 [1
e 594,000 [1]
- 0002 [1]
MTHFD 0022 [4]
Sp—— 001 1
Kut1H27D pradpn 0.022 Estimated as K7D nadpn
[nadp] 0.02 [5]
[nadph] 0.01 [5]
MTHFC
[SP—— 134 (61
Yarmrc, 3.35 Estimated as Kyrrrcr Vinasr Vs
axf 800,000 [1]
e 20,000 [1]
P 250 (1]
-MTHFC,10fthf 100 [1]
FTHFL
Kerarr, 0.23 Estimated from (4) at equilibrium
(e = 0)
[10fthf],, 4 Clostridium cylindrosporum [7]
[adp]., 4 Clostridium cylindrosporum [7]
[pil., 4 Clostridium cylindrosporum [7]
[thf]., 0.9 Clostridium cylindrosporum [7]
[atp]eq 0.8 Clostridium cylindrosporum [7]
[for]., 2.3 Clostridium cylindrosporum [7]
Ke g 00364 [8]
Krrare,10ms 10 Clostridium cylindrosporum [9]
i 0.0364  [8]
S— 4 [8]
Krrare, o 0.364 [8]
Krrort ap 0.0302 [8]
Krrsrz o 0.0367  [8]
[adp] 0.011 [10]
[pi] 6 [10]
[atp] 5 [10]
[for] 0.9 [1]

[1] Nijhout H F, et al. (2004) J Biol Chem 279: 55008-16;

[2] Scheer M, et al. (2011) Nucleic Acids Res 39: D670-6;

[3] Kruschwitz H, et al. (1995) Protein Expr Purif 6: 411-6;

[4] Pawelek P D, et al. (1998) Biochemistry 37: 1109-15;

[5] Pinkas-Sarafova A, et al. (2005) Biochem Biophys Res Commun 336: 554-64;
[6] Pawelek P D, et al. (2000) Biochim Biophys Acta 1479: 59-68;

[7] Himes R H, et al. (1962) J Biol Chem 237: 2903-14;

[8] Christensen K E, et al. (2009) Hum Mutat: 212-20;

[9] Buttlaire DH (1980) Methods Enzymol 66: 585-99; and

[10] Kushmerick M J, et al. (1992) Proc Natl Acad Sci USA 897521-5.

We focus our analysis on the concentrations of the inter-
mediate metabolites thf, mlthf, methf and 10fthf, assuming
the concentration of ser-L, glyc, formate, co-factors and
enzymes constant, and given as input parameters of the



US 9,449,144 B2

69

model (Table 9, above). The concentration of intermediate
metabolites evolve in time following the first order differ-
ential equations

dlihf] 47
T Serurc(thf ], [L0fthf]) = fsmr(Imithf], [thf])
dlmithf] “8)
r TEE Ssumr([mithf ], [thf]) — furnrc(mithf], [methf])
d[methf] 49)
e Sururc(mithf], [methf]) - furnrp([methf], [10fthf])
dlihf] (50)
= Surarp([methf ], [10fthf]) = frrurc([10fihf], [th1])

Our aim is to determine whether this dynamical system
has a steady state with in the direction of producing ATP. To
this end we numerically determined the fixed point of
(47)-(50) that resulted in the highest steady state flux with
ATP production. This was accomplished solving the opti-
mization problem:

Maximize frrzpz([mlth],[#/])

subject to the fixed point constraints

G

dlihf) _ dimihf] _ dlmethf]  dlihf]
dr ~  dr ~  dr T~ dr ~

0 (62

and the metabolite concentration bounds
O=[thf]<[thf] nas
Os[mlthf]s[mlthf],,_,

O=[methf]=[methf],, .

0=[10fthf]<[10fthf] (53)

max®

The problem was solved in Matlab using the function
fmicon, with all upper bounds equal to 1 mM.

For all 0<Egyrryrpi/Esmnrr+Esarrarp)<l the steady
state with maximum rate is characterized by a positive rate
of ATP production (FIG. 30, gray circles), indicating that the
reaction cycle shown in FIG. 4b is thermodynamically
feasible in the direction of ATP production. The maximum
rate is achieved at a relative concentration Eg, 7z
(EsgnatEsasreen,) around 0.05. Hence, the cycle achieves
higher rates when the relative concentration of SMTHFD1 is
much higher than that of SHMT. We also note the maximum
rate calculated from the specified kinetic parameters is much
higher than the median obtained from simulations applying
a two-fold change in the model kinetic parameters (FIG. 30,
black squares). This could indicate that the kinetic param-
eters in this pathway have been selected for maximum ATP
production. However, since the curve for the observed
kinetic parameters is still within the 90% confidence inter-
vals (FIG. 30, black error bars) we cannot exclude this is just
coincidence.

The Novel ATP Producing Pathway is Regulated by Myc

Consistent with our modeling results, the upregulation of
serine and glycine biosynthesis have been observed in some
tumor types before. To start to gain insight into this path-
way’s regulation, we next aimed to identify transcription
factors regulating the novel ATP-producing pathway. We
performed a search of several transcription factor signatures
annotated in the Molecular Signatures Database (MSigDB,
Subramanian A, et al. (2005) Proc Natl Acad Sci USA 102:
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15545-15550). We identified Myc as a transcriptional regu-
lator of six out of the 11 genes in the pathway: PHGDH,
PSPH, SHMT1, MTHFDI, MTHFD2 and GCSH (Myc
Target Gene Database, (Zeller K1, et al. (2003) Genome Biol
4: R69)), indicating that Myc-induced tumorigenesis may be
intimately linked to the activation of this pathway. To test
this hypothesis, we have analyzed data from a doxycycline-
inducible murine model of Myc-driven liver cancer (Hu S,
et al. (2011) Cell Metab 14: 131-142), reporting gene
expression microarrays at different tumor stages. We find
that the genes coding for the enzymes in the novel ATP-
producing pathway are induced following Myc induction,
and all, but two (Psatl and Psph), return to their control
levels upon Myc downregulation-induced tumor regression
(FIG. 31). Thus, activation of the novel ATP-producing
pathway is evident upon Myc-induced tumorigenesis.
Discussion

The existence of an alternative glycolysis pathway with
net zero ATP production in rapidly proliferating cells chal-
lenges the general notion that the production of ATP is a
major function of glycolysis. Instead, an alternative hypoth-
esis suggests that the increased rate of glycolysis in rapidly
proliferating cells is present to support the increased demand
for precursor metabolites by anabolic processes involved in
cell growth and proliferation. However, based on a partial-
or full genome-scale reconstruction of human cell metabo-
lism containing the standard glycolysis pathway, we and
others have shown that the anabolic requirements can be
satisfied without the need for a dramatic upregulation of
glycolysis and the excretion of lactate. We have recapitu-
lated this result here, now using the alternative glycolysis
pathway with net zero ATP production, providing in silico
evidence that the demand for precursor metabolites can be
satisfied without upregulation of the alternative glycolysis
pathway (FIG. 26).

We have shown previously that molecular crowding is a
major determinant of the metabolic changes observed in
highly proliferating mammalian and prokaryotic cells and in
quiescent cells with high energy demands. In essence, the
high density of macromolecules in the intracellular millieu
results in a “competition” among mitochondria, ribosomes,
metabolic enzymes and structural protein for the available
intracellular space. At low metabolic rates this constraint is
less pronounced, and therefore the density of the required
organelles and macromolecules can increase to accommo-
date the increasing metabolic rate. However, just as a finite
number of people can be placed in a room, only a finite
amount of mitochondria can be present in the cell, resulting
in an upper bound for OxPhos capacity. To satisty its
energetic needs beyond this maximum OxPhos capacity the
cell need to switch to other pathways that are less costly in
terms of the required cell volume fraction to allocate the
corresponding enzymes, such as the classic glycolysis path-
way. However, this hypothesis has been challenged by the
observation that highly proliferating cells utilize an alterna-
tive glycolysis pathway with net zero ATP production. To
resolve this contradiction we have improved our genome-
scale metabolic model of a human cell to be able to
investigate the consequences of a net zero ATP production
glycolysis.

The results of our in silico analyses yield several surpris-
ing observations. The glycolysis flux is upregulated in
highly proliferating cells and it is routed from 3-phospho-
glycerate toward serine biosynthesis. This prediction is
supported by experimental observations in both cancer cells
and highly proliferating normal cells. Rapidly proliferating
normal cells (including embryonic cells) and cancer cells
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express the M2 isoenzyme of pyruvate kinase (PKM2). The
PKM2 isoform can be present either as a tetramer with high
PK catalytic activity or as a dimer with low catalytic activity,
in the latter case greatly reducing the rate over the last step
of standard glycolysis. The upregulation of serine and gly-
cine biosynthesis were observed both in various tumor types
and mitogen-activated normal lymphocytes, and serum
stimulation of RatlA fibroblast proliferation resulted in an
increased "*C-labeled glycine derived from 3-phosphoglyc-
erate, in a myc dependent manner. Also, when found upregu-
lated, the serine biosynthesis pathway’s enzymes are indi-
vidually essential both for the growth of a subset of breast
cancer and melanoma cell lines and for tumorigenesis in
3-dimensional in vitro and in vivo breast cancer models.
More importantly, we provided evidence that the expression
of genes in this pathway correlates with Myc overexpression
in a Myc-driven murine tumor model (FIG. 31). These
observations support the activity of the novel ATP-produc-
ing pathway in a subset of tumors and, in particular, in Myc
driven tumors.

Our in silico approach allow us to investigate the fate of
the high rate of the serine biosynthesis pathway. We discover
that its final endpoint is a novel pathway for ATP generation,
starting from the biosynthesis of serine and involving reac-
tions in the one carbon metabolism pathway and the serine
cleavage system (FIG. 29). The reaction responsible for the
net ATP generation is catalyzed by formate-tetrahydrofolate
ligase (EC 6.3.4.3), working in the ATP production direc-
tion. This pathway has a yield of 2 mole of ATP per mole of
3-phosphoglycerate, or 4 moles of ATP per mole of glucose.
Taken together our in silico evidence indicates that, even in
the context of an alternative glycolysis pathway with net
zero ATP production, glycolysis is upregulated to satisfy the
high energy demand of highly proliferating cells, during
conditions where molecular crowding imposes a bound or a
reduction in the mitochondrial density.

The novel pathway doubles the ATP yield from 2 to 4
mole of ATP per mole of glucose (See, Table 10).

TABLE 10

A. Glycolysis:

Glucose + 2 ADP + 2 Phosphate — 2 Lactate + 2ATP + 2H,O + 2H*
B. Novel ATP generating Pathway

Glucose + 2 L-glutamate + 6 NAD" + 4 NADP* + 6H,0 +
4 ADP + 4 Phosphate — 2NH, + 2 a-ketoglutarate + 6 NADH +
4 NADPH + 4 ATP + 14H* + 2CO,

The novel pathway requires, however, the balance of
several co-factors and thus it is coupled to several other
reactions. Yet, it remains to be elucidated what the potential
evolutionary advantage of having two alternative glycolysis
pathways is (i.e., the net zero ATP and the standard path-
ways). As we show here, the novel pathway can generate
two times more ATP, thus an energetic reason is probably
likely. In contrast, the novel pathway involves 17 reactions,
7 more than the standard glycolysis, potentially contributing
more to molecular crowding. Taken together with OxPhos,
we obtain a hierarchy in terms of ATP yield: OxPhos>>net-
zero-ATP-glycolysis>standard glycolysis, and the same
hierarchy in terms of molecular crowding. Therefore, these
pathways provide the cell with different alternatives to cope
with competing efficiency principles, ATP yield per mole of
substrate or ATP yield per occupied volume fraction. Con-
comittantly, other factors, such as the cellular lactate and
alanine production also has several potential advantages on
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the population level that may enhance the invasiveness of
tumor cells. Also, tumor cells frequently encounter fluctu-
ating hypoxia levels within growing tumors requiring a
capability to rapidly deploy alternative metabolic strategies.
In any event, our model identifies several metabolic changes
that can be subject to further theoretical and experimental
investigations and delineates potential enzyme targets for
treatment modalities attempting to interfere with cancer
metabolism.

Materials and Methods

Metabolic Network Reconstruction:

The reactions annotated in H. sapiens metabolic recon-
struction 1 were downloaded from the BiGG database
(Schellenberger J, et al. (2010) BiGG: a Biochemical
Genetic and Genomic knowledgebase of large scale meta-
bolic reconstructions. BMC Bioinformatics 11: 213).

Crowding Coefficients:

Dividing the mitochondrium specific volume (3.15 mL/g
in mammalian liver and 2.6 ml/g in muscle) by the rate of
ATP production per mitochondrial mass (0.1-1.0 mmol
ATP/min/g) we obtain am values between 0.0026 to 0.032
min/mM. Except when specified, we use the median 0.017
min/mM. Dividing the ribosome molar volume (vz=4,000
nm® 6.02 10**/mol=2.4 L/mmol) by the rate of protein
synthesis per ribosome (0.67 proteins/min) we obtain a;=3.6
min/mM. The enzyme crowding coeflicients were estimated
as a/=vz/k,. Multiplying the median molecular weight of
human enzymes (98,750 g/mol, BRENDA by the enzymes
specific volume (approximated by the specific volume of
spherical proteins, 0.79 ml./g) we obtain an estimated
enzymes molar volume of v.=0.078 L/mmol.

Sensitivity Analysis:

The turnover numbers of human enzymes k have signifi-
cant variations from 1 to 100 sec™" and the distribution of
log, (k) is approximately uniform in this range (BRENDA).
Based on this data we sampled the log, ,(kefl) values from
a uniform distribution in the range between log,,(1) to
log,,(100). At each proliferation rate we run 100 simula-
tions. On each simulation, for each reaction, a value of 'k,
is extracted from the distribution described above. With this
set of k-, parameters we then solve the optimization prob-
lem (1)-(5) and obtain estimates for the reaction rates. Based
on the 100 simulations we finally estimate the median and
90% confident intervals for the rate of each reaction. This
data is reported in FIGS. 2-4 for selected reactions. Macro-
molecular composition: Proteins were divided into three
pools: ribosomal-, components of metabolic enzyme com-
plexes-, and non-metabolic proteins. Each ribosome con-
tributes to n,,=82 proteins/ribosome (49 in the 608 and 33
in the 40S subunits). The ribosomal protein concentration
was computed as Pr=n,z¢r/vz. Each enzyme contributes
with n,;=2.4 proteins in average, estimated as median
enzyme molecular weight (98,750 g/mol, reported above)
divided by the median molecular weight of a human protein
(40,835 g/mol). The median molecular weight of a human
protein was estimated from the median protein length (355
amino acids) and the typical amino acid composition. The
enzyme related protein concentration was computed as
Pz=210P.f/k,. The concentration of non-metabolic proteins
was estimated as 85% (10% metabolic enzymes and 5%
ribosomal protein) of the reported total protein content per
cell dry weight (0.018 mmol/g DW), i.e. 0.015 mmol/g DW.
The lipids, DNA and RNA composition were estimated by
their relative abundance in a generic mammalian cell. The
abundance per cell dry weight was converted to concentra-
tions after dividing by the typical cell specific volume 4.3
ml./g. This resulted in a concentration of non-metabolic
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protein of P,=3.59 mM. The maximum macromolecular
density of human cells in the absence of osmotic stress is
around ¢,,,.=40%.

Maintenance Parameters:

The ATP production rate necessary for cell maintenance is
1.55 mmol ATP/g DW/h. The basal protein degradation rate
was estimated as k,(P,+Pz+Py), where k,,=0.01/h.

Simulations:

The optimization problem in equations (1)-(5) was solved
in Matlab, using the linear programming function linprog.
All reversible reactions were represented by an irreversible
reaction on each direction with their own effective turnover
number k. Most flux bounds were set to v, ,,;,=0 and
Y, max—, unless specified otherwise.

Microarray Data Analysis:

The Gene expression dataset reported in Hu S, et al.
((2011) (13)C-Pyruvate Imaging Reveals Alterations in Gly-
colysis that Precede c-Myc-Induced Tumor Formation and
Regression. Cell Metab 14: 131-142) was downloaded from
the Gene Expression Omnibus (GEO:GSE28198)). RMA
normalized signals were calculated and mean-centered
across samples. Model predicted relative cell volume frac-
tion occupied by metabolic enzymes (squares), ribosomes
(circles) and mitochondria (triangles), respectively. The
model-predicted median and 90% confidence intervals are
shown. Note, that the predicted metabolic switch is lost if the
molecular crowding constraint is removed from the model
(see FIG. S1). Abbreviations: metabolite import/export (Ex
metabolite: gle=glucose, gln=glutamine, Ala-[.=[ -alanine,
phe-L=L-phenylalanine, ile-L.=isoleucine, lys-L=L.-lysine,
val-L=L-valine, lac-L=[-lactate), phosphoglycerate kinase
(PGK), pyruvate kinase (PK), phosphoglycerate dehydroge-
nase (PGCD), L-alanine transaminase (ALATA-L), malic
enzyme (ME), malate dehydrogenase (MDH), pyruvate car-
boxylase (PC), pyruvate dehydrogenase (PDH), citrate syn-
thase (CS), a-ketoglutarate dehydrogenase (AKGD).

Whereas particular embodiments of the one or more
inventions described herein have been described above for
purposes of illustration, it will be evident to those skilled in
the art that numerous variations of the details of those one
or more inventions may be made without departing from the
embodiments defined in the appended claims.

This application is a Continuation-In-Part of U.S. patent
application Ser. No. 12/170,852, filed Jul. 10, 2008, which
claims the benefit under 35 U.S.C. §119(e) to U.S. Provi-
sional Patent Application No. 60/959,024, filed Jul. 10,
2007, this application also claims the benefit under 35
U.S.C. §119(e) to U.S. Provisional Patent Application No.
61/540,770, filed Sep. 29, 2011, each of which is incorpo-
rated herein by reference in its entirety.

i,min

We claim:

1. A computer-implemented method for achieving an
optimal function of a biochemical reaction network in cells
in a cell culture, comprising:

(a) calculating in a computer one or more optimal cell
culture parameters in a cell culture using a flux balance
analysis constrained by a solvent capacity of cells in the
cell culture, wherein the optimal cell culture parameter
is calculated by determining an optimal property of a
biochemical reaction network comprising a list of bio-
chemical reactions by applying a computational opti-
mization method to one or more of the biochemical
reactions of the biochemical reaction network, the
optimization method comprising (i) altering one or
more elements of the one or more biochemical reac-
tions in the biochemical reaction network and re-
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computing the optimal property, and (ii) repeating (i)
until an optimal function is reached; and

(b) initiating or maintaining the optimal cell culture
parameter in the cell culture to achieve the optimal
function of the biochemical reaction network in the
cells.

2. The method of claim 1, in which the optimization
method further comprises calculating one or more of a
maximum metabolic rate, an optimal metabolite concentra-
tion and an enzyme activity by applying a computational
optimization method to a kinetic model of a metabolic
pathway.

3. The method of claim 1, further comprising culturing a
cell under culture conditions that favor achievement of the
optimal function.

4. The method of claim 1, further comprising: (¢) con-
structing the genetic makeup of a cell to contain the bio-
chemical reactions (d) placing the cell constructed under (c)
in culture under a specified environment to obtain a popu-
lation of cells; and (e) cultivating the cells as in step (d) for
a sufficient period of time and under conditions to allow the
cells to evolve to the desired optimal function determined
under (a), wherein the biochemical reaction network com-
prises a comprehensive biochemical reaction network.

5. The method of claim 1, wherein the optimal function is
maximizing biomass production.

6. The method of claim 1, in which the optimal property
is maximal internal yield of ATP.

7. The method of claim 1, in which the solvent capacity
accounts for ribosome density in the cells in the cell culture
as a measure of ribosomal-, enzyme associated-, and non-
metabolic proteins in the cells.

8. The method of claim 1, in which the solvent capacity
accounts for mitochondria as a subcellular compartment in
the cells in the cell culture.

9. The method of claim 1, in which the cells are human
cells.

10. The method of claim 1, in which the cells are cancer
cells.

11. The method of claim 1 that comprises a model of a
pathway for ATP generation that involves reactions in the
serine biosynthesis, one-carbon metabolism and the glycine
cleavage system.

12. A computer readable medium having stored thereon
instructions which, when executed by a processor, cause the
processor to implement a process implementing a computer
model for achieving an optimal function of a biochemical
reaction network in cells in a cell culture, comprising:

(a) calculating one or more optimal cell culture param-
eters in a cell culture using a flux balance analysis
constrained by a solvent capacity of cells in the cell
culture, wherein the optimal cell culture parameter is
calculated by determining an optimal property of a
biochemical reaction network comprising a list of bio-
chemical reactions by applying a computational opti-
mization method to one or more of the biochemical
reactions of the biochemical reaction network, the
optimization method comprising (i) altering one or
more elements of the one or more biochemical reac-
tions in the biochemical reaction network and re-
computing the optimal property, and (ii) repeating (i)
until an optimal function is reached; and

(b) initiating or maintaining the optimal cell culture
parameter in the cell culture to achieve the optimal
function of the biochemical reaction network in the
cells.
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13. The computer readable medium of claim 12, in which
the optimization method further comprises calculating one
or more of a maximum metabolic rate, an optimal metabolite
concentration and an enzyme activity by applying a com-
putational optimization method to a kinetic model of a
metabolic pathway.

14. The computer readable medium of claim 12, wherein
the optimal function is maximizing biomass production.

15. The computer readable medium of claim 12, in which
the optimal property is maximal internal yield of ATP.

16. The computer readable medium of claim 12, in which
the solvent capacity accounts for ribosome density in the
cells in the cell culture as a measure of ribosomal-, enzyme
associated-, and non-metabolic-proteins in the cells.

17. The computer readable medium of claim 12, in which
the solvent capacity accounts for mitochondria as a subcel-
Iular compartment in the cells in the cell culture.

18. The computer readable medium of claim 12, in which
the cells are human cells.

19. The computer readable medium of claim 12, in which
the cells are cancer cells.

20. The computer readable medium of claim 12, that
comprises a model of a pathway for ATP generation that
involves reactions in the serine biosynthesis, one-carbon
metabolism and the glycine cleavage system.

21. A device comprising and the computer-readable
medium of claim 12 and a processor for executing the
instructions on the computer-readable medium for achieving
an optimal function of a biochemical reaction network in
cells in a cell culture, comprising:

(a) calculating one or more optimal cell culture param-

eters in a cell culture using a flux balance analysis
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constrained by a solvent capacity of cells in the cell
culture, wherein the optimal cell culture parameter is
calculated by determining an optimal property of a
biochemical reaction network comprising a list of bio-
chemical reactions by applying a computational opti-
mization method to one or more of the biochemical
reactions of the biochemical reaction network, the
optimization method comprising (i) altering one or
more elements of the one or more biochemical reac-
tions in the biochemical reaction network and re-
computing the optimal property, and (ii) repeating (i)
until an optimal function is reached; and

(b) initiating or maintaining the optimal cell culture

parameter in the cell culture to achieve the optimal
function of the biochemical reaction network in the
cells.

22. The device of claim 21, further comprising one or
more additional components for implementation of the
instructions, including, without limitation: a pH sensor; a
gas sensor; a chemical sensor; a temperature sensor; one or
more culture vessels; one or more heating elements; one or
more cooling elements; one or more reservoirs for storing
cell culture medium, cell culturing ingredients or an ana-
lytical composition; one or more mechanisms for dispensing
cell culture medium, cell culturing ingredients or an ana-
Iytical composition into a cell culture or other container or
for taking and/or analyzing samples from one or more cell
culture vessels; one or more analytical devices; a display and
one or more communication subsystems for receiving or
transmitting data.



